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Learning Graph Representations

* A graph representation function f maps graphs to real-valued vectors
» Graphs can have vertex/edge features

* Example: representations for end-to-end supervised learning on graphs
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Permutation-Invariance of Learned Representations

* An adjacency matrix 4 in the data is not the only valid such
matrix, any permuted version, denoted A(™, is also valid
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Current Representations are Limited

 Example: For GNNs, a current state-of-the-art for learning
permutation-invariant representations, we have:

________________________________________________________________________________________________________________________________________________________________________________________

Theorem:(Xu et al. 2019, Morris et al. 2019): WL[1] GNNs are no
‘more powerful than the Weisfeiler-Lehman (WL) algorithm for graph
isomorphism testing. ‘

________________________________________________________________________________________________________________________________________________________________________________________

 WL[1] GNNs can’t perform CSL task:
» Cycle graphs with skip links of length R
» Task: given graph, predict R
» WL[1] GNNs fails

* Relational Pooling will help overcome such limitations
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Relational Pooling

* Given graph G = (4, X) with n vertices, where rows of X are
node attributes

_ 1 S
Fax=—> {(A“”,X(”))

Any permutation-sensitive graph function

_____________________________________________________________________________________________________________________________________________________________________________________

* RP is a most-powerful representation
* but intractable, must be approximated
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A Case-Study: Making GNNs more expressive

* Define a permutation-sensitive GNN

(1) add unique IDs as node features
(2) run any GNN
RP-GNN: sum over all permutations of IDs
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_______________________________________________________________________________________________________________________________________________________________________________________
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One tractability approach: stochastic optimization (r-SGD)

* At each epoch, just sample one set of permutation-sensitive IDs

+ GNN + 0 + 0

 CSL task w/ 10 classes (graphs with 41 vertices),

RP-GNN" to predict the class S
* We also observed promising results wrapping %33’0.4

RP around GNNs for molecules C
 Take home: adding stochastic positional IDs is a 20'3

simple way to make GNNs more powerful! hs
*state-of-the-art Graph Isomorphism Network of Xu et. al. 2019 @0.1 W RP-GIN
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Approximate Permutation-Invariance

* Estimating most-expressive RP with tractability strategies is
only approximately permutation-invariant

* But learning more expressive models approximately opens
up interesting new research directions
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* RP provides most-expressive representations, learned approximately
» Promising new research direction

e Qur poster includes details on
> more tractability strategies

» choices for f, like CNNs and RNNs, now valid under RP
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