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MMSB [Airoldi et al., 2008]
» Given a graph adjacency matrix A
» An edge is present/absent follows Bernoulli
Pr(Ay = {0,1}) = Pj(1 — Py)'

» P=M'BM: B c [0, 1]° community interaction
m; € A = {x:x>0,1'x = 1} mixed-membership of node i

* Task: Uniquely identify (part of) M from data A

% Challenges: identifiability & scalability
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inspired by Anandkumar et al. [2014]

» Divide the network into three sets of nodes 8, S, and S,
— 8,: n nodes interested in finding their memberships
— 81: k— 1 nodes
— §y: all the other nodes to act as 2-star samples
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> Let ¥ = Efm;,m}] and |So| — oo, then Y — M|B" XBM,

Y =EM,

+ Can we uniquely recover M, € A" from Y € R&—1)xn?
2/6



[

k
Yi, = =mi;, = g &mii, m;, € A
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» y;, is a convex combination of £, ..., &,
» y;, belongs to the convex hull of £, ..., &,
» There are infinitely many enclosing simplexes

% Intuition: Find the one with minimum volume

1
migiﬂr}lzize (k—l)!’det[&l & 0 & —gk]‘

subjectto Y = EM,, M, >0, 1'M, =1.
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Definition: Sufficiently Scattered (informal)
Let D be a “hyper-disc” on the hyperplane 1'x = 1 defined as
D={xecR:|x|* < L,f = 1}. A matrix M, with all its

k—1
columns in A, is called sufficiently scattered if D C conv(M).

[Huang et al., 2014, 2016, 2018]

Pure node Sufficiently scattered  Not identifiable
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» Equivalently, define Y = Bﬂ ,

minimize ‘detE )
EM,

subjectto Y =EM,, M, >0,e,5 =1'.

Theorem [Fu et al., 2015, Lin et al., 2015]

Suppose Y = Z'M’, where rank(Z") = k and M} € A" is
sufficiently scattered. Let (M., =,) be an optimal solution for
($), then there exists a permutation matrix IT € R*** such that

M,=1IM, 5 ==.1I
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» Data sets:
— Coauthorship data from Microsoft Academic Graph (MAG)
and DBLP [Mao et al., 2017]
— Groundtruth community: “field of study” in MAG
and venues in DBLP
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