Infinite Mixture Prototypes
for Few-Shot Learning

Adaptively inferring model capacity for simple and complex tasks
Kelsey Allen, Evan Shelhamer*, Hanul Shin*, Josh Tenenbaum
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Few-Shot Learning by Deep Metric Learning
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Simple and Complex Tasks

e Simple tasks might be accurately represented as uni-modal clusters
e Complex tasks might require a more sophisticated clustering
e A deeper/wider network may not solve both kinds of task simultaneously
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Simple and Complex Tasks

e Simple tasks might be accurately represented as uni-modal clusters
e Complex tasks might require a more sophisticated clustering
e A deeper/wider network may not solve both kinds of task simultaneously
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Infinite Mixture Modeling

Represent clustering process using
Dirichlet Process mixture model

Unbounded number of clusters in
mixture - let data determine for itself

Naturally interpolates between
nearest neighbors (each data point
its own cluster) and prototypes (each
cluster is uni-modal Gaussian)

Semi-supervised and unsupervised
possible
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Adaptive Capacity for Simple and Complex Tasks

e Adapt between simple and complex data distributions
by learning deep representation and inferring the number of clusters
e Efficient inference based on DP-means
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Results Poster 87

- 25% absolute improvement over prototypical nets (Snell et al. 2017)
for alphabet/super-class recognition on Omniglot

- 10% absolute improvement for super-class to sub-class transfer
on tiered-ImageNet

- equal or better to fully-supervised and semi-supervised prototypical nets
on Omniglot and mini-lImageNet benchmarks

- 7% absolute improvement over deep nearest neighbors
on mini-lImageNet

- 20% absolute improvement in unsupervised clustering AMI



