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● Simple tasks might be accurately represented as uni-modal clusters
● Complex tasks might require a more sophisticated clustering
● A deeper/wider network may not solve both kinds of task simultaneously
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Simple and Complex Tasks

Omniglot character embeddings Omniglot super category embeddings

● Simple tasks might be accurately represented as uni-modal clusters
● Complex tasks might require a more sophisticated clustering
● A deeper/wider network may not solve both kinds of task simultaneously



Infinite Mixture Modeling
● Represent clustering process using 

Dirichlet Process mixture model

● Unbounded number of clusters in 
mixture - let data determine for itself

● Naturally interpolates between 
nearest neighbors (each data point 
its own cluster) and prototypes (each 
cluster is uni-modal Gaussian)

● Semi-supervised and unsupervised 
possible



● Adapt between simple and complex data distributions
by learning deep representation and inferring the number of clusters

● Efficient inference based on DP-means

Adaptive Capacity for Simple and Complex Tasks



Results
- 25% absolute improvement over prototypical nets (Snell et al. 2017)

for alphabet/super-class recognition on Omniglot

- 10% absolute improvement for super-class to sub-class transfer 
on tiered-ImageNet

- equal or better to fully-supervised and semi-supervised prototypical nets
on Omniglot and mini-ImageNet benchmarks

- 7% absolute improvement over deep nearest neighbors
on mini-ImageNet

- 20% absolute improvement in unsupervised clustering AMI

Poster 87


