Minimal Achievable Sufficient Statistic Learning Milan Cvitkovic California Institute of Technology/Amazon Web Services > Günther Koliander Austrian Academy of Sciences Goal: Find representation Z of X that is useful for producing Y $$X \rightarrow Z \rightarrow Y$$ #### Goal: Find representation Z of X that is useful for producing Y Hypothesis: Z should be a *minimal* sufficient statistic of X for Y [1, 2] $$X \rightarrow Z \rightarrow Y$$ # Hypothesis: Z should be a *minimal* sufficient statistic of X for Y [1, 2] $$X \rightarrow Z \rightarrow Y$$ Statistic: Z = f(X) Sufficient: p(X | Y, Z) = p(X | Z) Minimal: g(Z) isn't sufficient for any non-invertible g(Z) # Hypothesis: Z should be a *minimal* sufficient statistic of X for Y [1, 2] $$X \rightarrow Z \rightarrow Y$$ Statistic: Z = f(X) Sufficient: p(X | Y, Z) = p(X | Z) A little strict for ML Minimal: g(Z) isn't sufficient for any non-invertible g # Hypothesis: Z should be a *minimal* achievable sufficient statistic of X for Y $$X \rightarrow Z \rightarrow Y$$ Statistic: Z = f(X) for f in F Sufficient: p(X | Y, Z) = p(X | Z) #### Minimal Achievable: g(Z) isn't sufficient for any Lipschitz, non-invertible g where gof in F ### How do we find a minimal (achievable) sufficient statistic? X discrete: $$f \in \arg\min_{S \in \mathcal{F}} I(X, S(X))$$ $$s.t. \ I(S(X), Y) = \max_{S' \in \mathcal{F}} I(S'(X), Y)$$ X, S continuous: X ### How do we find a minimal (achievable) sufficient statistic? X discrete: $$f \in \arg\min_{S \in \mathcal{F}} I(X, S(X))$$ $$s.t. \ I(S(X), Y) = \max_{S' \in \mathcal{F}} I(S'(X), Y)$$ X, S continuous: X $$I(X, S(X)) = \infty$$ This is a generally problematic issue in machine learning [3, 4]. #### Solution: Conserved Differential Information #### Solution: Conserved Differential Information ### How do we find a minimal (achievable) sufficient statistic? X discrete: $$f \in \arg\min_{S \in \mathcal{F}} I(X, S(X))$$ $$s.t. \ I(S(X), Y) = \max_{S' \in \mathcal{F}} I(S'(X), Y)$$ X, S continuous: $$f \in \arg\min_{S \in \mathcal{F}} C(X, S(X))$$ $$s.t. \ I(S(X), Y) = \max_{S'} I(S'(X), Y)$$ ## MASS Learning #### Minimize: $$\mathcal{L}_{MASS}(f) := H(Y|f(X)) + \beta H(f(X)) - \beta \mathbb{E}_X[\log J_f(X)]$$ Make the output predictable from the representation... ...while keeping the representation as low-entropy as possible... ...but scaling things doesn't count ## Results #### Same accuracy as standard training and VIB CIFAR-10, ResNet20, 4 trials | METHOD | TRAINING SET SIZE | | | | |---------------------|----------------------------------|----------------------------------|----------------------------------|--| | Метнор | 2500 | 10,000 | 40,000 | | | SoftmaxCE | 50.0 ± 0.7 | $\textbf{67.5} \pm \textbf{0.8}$ | $\textbf{81.7} \pm \textbf{0.3}$ | | | VIB, β =1e-3 | 49.5 ± 1.1 | 66.9 ± 1.0 | 81.0 ± 0.3 | | | VIB, β =1e-4 | 49.4 ± 1.0 | 66.4 ± 0.5 | 81.2 ± 0.4 | | | VIB, β =1e-5 | 50.0 ± 1.1 | 67.9 ± 0.8 | 80.9 ± 0.5 | | | VIB, β =0 | 50.6 ± 0.8 | 67.1 ± 1.0 | 81.5 ± 0.2 | | | MASS, β =1e-3 | 38.2 ± 0.7 | 59.6 ± 0.8 | 75.8 ± 0.5 | | | MASS, β =1e-4 | 49.9 ± 1.0 | 66.6 ± 0.4 | 80.6 ± 0.5 | | | MASS, β =1e-5 | 50.1 ± 0.5 | 67.4 ± 1.0 | 81.6 ± 0.4 | | | MASS, β =0 | $\textbf{50.2} \pm \textbf{1.0}$ | 67.4 ± 0.3 | 81.5 ± 0.2 | | #### Improved Uncertainty Quantification CIFAR-10, ResNet20, 4 trials | Method | Test Accuracy | Entropy | NLL | Brier Score | |---------------------|----------------|-------------------|------------------------------|---------------------| | SoftmaxCE | 81.7 ± 0.3 | 0.087 ± 0.002 | 1.45 ± 0.04 | 0.0324 ± 0.0005 | | VIB, β =1e-3 | 81.0 ± 0.3 | 0.089 ± 0.003 | 1.51 ± 0.04 | 0.0334 ± 0.0005 | | VIB, β =1e-4 | 81.2 ± 0.4 | 0.092 ± 0.002 | 1.46 ± 0.05 | 0.0331 ± 0.0007 | | VIB, β =1e-5 | 80.9 ± 0.5 | 0.087 ± 0.005 | 1.58 ± 0.08 | 0.0339 ± 0.0008 | | VIB, β =0 | 81.5 ± 0.2 | 0.079 ± 0.001 | 1.70 ± 0.06 | 0.0331 ± 0.0007 | | MASS, β =1e-3 | 75.8 ± 0.5 | 0.139 ± 0.003 | 1.66 ± 0.07 | 0.0417 ± 0.0011 | | MASS, β =1e-4 | 80.6 ± 0.5 | 0.109 ± 0.002 | $\boldsymbol{1.33 \pm 0.02}$ | 0.0337 ± 0.0008 | | MASS, β =1e-5 | 81.6 ± 0.4 | 0.095 ± 0.003 | 1.36 ± 0.03 | 0.0320 ± 0.0005 | | MASS, β =0 | 81.5 ± 0.2 | 0.092 ± 0.000 | 1.43 ± 0.04 | 0.0325 ± 0.0004 | Caveat: current implementation expensive, but ample room for improvement More results at our poster. Code available at github.com/mwcvitkovic/MASS-Learning.