Minimal Achievable Sufficient Statistic Learning

Milan Cvitkovic California Institute of Technology/Amazon Web Services

> Günther Koliander Austrian Academy of Sciences

Goal: Find representation Z of X that is useful for producing Y

$$X \rightarrow Z \rightarrow Y$$

Goal: Find representation Z of X that is useful for producing Y

Hypothesis: Z should be a *minimal* sufficient statistic of X for Y [1, 2]

$$X \rightarrow Z \rightarrow Y$$

Hypothesis: Z should be a *minimal* sufficient statistic of X for Y [1, 2]

$$X \rightarrow Z \rightarrow Y$$

Statistic: Z = f(X)

Sufficient: p(X | Y, Z) = p(X | Z)

Minimal: g(Z) isn't sufficient for any non-invertible g(Z)

Hypothesis: Z should be a *minimal* sufficient statistic of X for Y [1, 2]

$$X \rightarrow Z \rightarrow Y$$

Statistic: Z = f(X)

Sufficient: p(X | Y, Z) = p(X | Z)

A little strict for ML

Minimal: g(Z) isn't sufficient for any non-invertible g

Hypothesis: Z should be a *minimal* achievable sufficient statistic of X for Y

$$X \rightarrow Z \rightarrow Y$$

Statistic: Z = f(X) for f in F

Sufficient: p(X | Y, Z) = p(X | Z)

Minimal Achievable:

g(Z) isn't sufficient for any Lipschitz, non-invertible g where gof in F

How do we find a minimal (achievable) sufficient statistic?

X discrete:

$$f \in \arg\min_{S \in \mathcal{F}} I(X, S(X))$$

$$s.t. \ I(S(X), Y) = \max_{S' \in \mathcal{F}} I(S'(X), Y)$$

X, S continuous: X

How do we find a minimal (achievable) sufficient statistic?

X discrete:

$$f \in \arg\min_{S \in \mathcal{F}} I(X, S(X))$$

$$s.t. \ I(S(X), Y) = \max_{S' \in \mathcal{F}} I(S'(X), Y)$$

X, S continuous: X

$$I(X, S(X)) = \infty$$

This is a generally problematic issue in machine learning [3, 4].

Solution: Conserved Differential Information

Solution: Conserved Differential Information

How do we find a minimal (achievable) sufficient statistic?

X discrete:

$$f \in \arg\min_{S \in \mathcal{F}} I(X, S(X))$$

$$s.t. \ I(S(X), Y) = \max_{S' \in \mathcal{F}} I(S'(X), Y)$$

X, S continuous:

$$f \in \arg\min_{S \in \mathcal{F}} C(X, S(X))$$

$$s.t. \ I(S(X), Y) = \max_{S'} I(S'(X), Y)$$

MASS Learning

Minimize:

$$\mathcal{L}_{MASS}(f) := H(Y|f(X)) + \beta H(f(X)) - \beta \mathbb{E}_X[\log J_f(X)]$$

Make the output predictable from the representation...

...while keeping the representation as low-entropy as possible...

...but scaling things doesn't count

Results

Same accuracy as standard training and VIB

CIFAR-10, ResNet20, 4 trials

METHOD	TRAINING SET SIZE			
Метнор	2500	10,000	40,000	
SoftmaxCE	50.0 ± 0.7	$\textbf{67.5} \pm \textbf{0.8}$	$\textbf{81.7} \pm \textbf{0.3}$	
VIB, β =1e-3	49.5 ± 1.1	66.9 ± 1.0	81.0 ± 0.3	
VIB, β =1e-4	49.4 ± 1.0	66.4 ± 0.5	81.2 ± 0.4	
VIB, β =1e-5	50.0 ± 1.1	67.9 ± 0.8	80.9 ± 0.5	
VIB, β =0	50.6 ± 0.8	67.1 ± 1.0	81.5 ± 0.2	
MASS, β =1e-3	38.2 ± 0.7	59.6 ± 0.8	75.8 ± 0.5	
MASS, β =1e-4	49.9 ± 1.0	66.6 ± 0.4	80.6 ± 0.5	
MASS, β =1e-5	50.1 ± 0.5	67.4 ± 1.0	81.6 ± 0.4	
MASS, β =0	$\textbf{50.2} \pm \textbf{1.0}$	67.4 ± 0.3	81.5 ± 0.2	

Improved Uncertainty Quantification

CIFAR-10, ResNet20, 4 trials

Method	Test Accuracy	Entropy	NLL	Brier Score
SoftmaxCE	81.7 ± 0.3	0.087 ± 0.002	1.45 ± 0.04	0.0324 ± 0.0005
VIB, β =1e-3	81.0 ± 0.3	0.089 ± 0.003	1.51 ± 0.04	0.0334 ± 0.0005
VIB, β =1e-4	81.2 ± 0.4	0.092 ± 0.002	1.46 ± 0.05	0.0331 ± 0.0007
VIB, β =1e-5	80.9 ± 0.5	0.087 ± 0.005	1.58 ± 0.08	0.0339 ± 0.0008
VIB, β =0	81.5 ± 0.2	0.079 ± 0.001	1.70 ± 0.06	0.0331 ± 0.0007
MASS, β =1e-3	75.8 ± 0.5	0.139 ± 0.003	1.66 ± 0.07	0.0417 ± 0.0011
MASS, β =1e-4	80.6 ± 0.5	0.109 ± 0.002	$\boldsymbol{1.33 \pm 0.02}$	0.0337 ± 0.0008
MASS, β =1e-5	81.6 ± 0.4	0.095 ± 0.003	1.36 ± 0.03	0.0320 ± 0.0005
MASS, β =0	81.5 ± 0.2	0.092 ± 0.000	1.43 ± 0.04	0.0325 ± 0.0004

Caveat: current implementation expensive, but ample room for improvement

More results at our poster.

Code available at github.com/mwcvitkovic/MASS-Learning.