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Unsupervised representation learning

(Q: What makes a good representation?]

» Ability to reconstruct (— prevalance of autoencoders)

» Robust to pertubations of the input

» Useful for downstream tasks (e.g., clustering, or classification)

» etc.
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Common idea: Control (/or enforce) properties of (/on) the latent representations in Z.
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Unsupervised representation learning

[Q: What makes a good representation?]

» Ability to reconstruct (— prevalance of autoencoders) Contractive AE's [Rifai et al.. ICML "11]

» Robust to pertubations of the input

» Useful for downstream tasks (e.g., clustering, or classification)

» etc.

Common idea: Control (/or enforce) properties of (/on) the latent representations in Z.
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Unsupervised representation learning

(Q: What makes a good representation?]

» Ability to reconstruct (— prevalance of autoencoders)

» Robust to pertubations of the input Denoising AE's [Vincent et al., JVMLR "10]

» Useful for downstream tasks (e.g., clustering, or classification)

» etc.

Common idea: Control (/or enforce) properties of (/on) the latent representations in Z.
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Unsupervised representation learning

(Q: What makes a good representation?]

» Ability to reconstruct (— prevalance of autoencoders)
» Robust to pertubations of the input

Sparse AE’s [Makhzani & Frey, ICLR "14]
» Useful for downstream tasks (e.g., clustering, or classification)

» etc.

Common idea: Control (/or enforce) properties of (/on) the latent representations in Z.
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Unsupervised representation learning

(Q: What makes a good representation?]

» Ability to reconstruct (— prevalance of autoencoders)

» Robust to pertubations of the input

» Useful for downstream tasks (e.g., clustering, or classification) Adversarial AE's [Makhzani et al.. ICLR "16]

» eftc. (by far not exhaustive)

Common idea: Control (/or enforce) properties of (/on) the latent representations in Z.
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Motivating (toy) example

[We aim to control properties of the latent space, but from a topological point of view!]




Motivating (toy) example

[We aim to control properties of the latent space, but from a topological point of view!]

Assume, we want to do Kernel Density Estimation (KDE) in the latent space Z.

Data (z;) Gaussian KDE
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Bandwidth selection: Scott’s rule [Scott, 1992]




Motivating (toy) example

[We aim to control properties of the latent space, but from a topological point of view!]

Assume, we want to do Kernel Density Estimation (KDE) in the latent space Z.
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Gaussian KDE

Bandwidth selection: Scott’s rule [Scott, 1992]

Data (z;) Gaussian KDE

Bandwidth selection can be challenging,
as the scaling greatly differs!



Controlling connectivity

[Q: How do we capture topological properties and what do we want to control? ]

Latent space Z
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Vietoris Rips Persistent Homology (PH)
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Controlling connectivity

[Q: How do we capture topological properties and what do we want to control? ]

Vietoris Rips Persistent Homology (PH)
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Controlling connectivity

[Q: How do we capture topological properties and what do we want to control?]

Vietoris Rips Persistent Homology (PH)

Radius r = r3

Latent space Z

» PH tracks topological changes as the ball radius r increases
» Connectivity information is caputred by 0-dim. persistent homology



Controlling connectivity

[Q: How do we capture topological properties and what do we want to control?]

Vietoris RIpS Persistent Homology (PH) Homogeneous arrangement!
Radius r = r3
What if

2z — fo(2)

>
77/\2\‘

Latent space Z
» PH tracks topological changes as the ball radius r increases \> beneficial for KDE

» Connectivity information is caputred by 0-dim. persistent homology



Connectivity loss

(Q: How can we control topological properties (connectivity properties in particular)?]
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Connectivity loss

[Q: How can we control topological properties (connectivity properties in particular)?J
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Connectivity loss

(Q: How can we control topological properties (connectivity properties in particular)?J
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Connectivity loss

[Q: How can we control topological properties (connectivity properties in particular)?J

Gradient signal
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Connectivity loss

[Q: How can we control topological properties (connectivity properties in particular)?]

Until now, we could not backpropagate through PH

Gradient signal
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Consider batches 2
(T1,...,2B) = |fp : X — R"|—t— go R" — X|— Rec|-, -] + Connectivity loss
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From a theoretical perspective, we show ...
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(1) ... that under mild conditions, the connectivity loss is differentiable

(2) ... metric-entropy based guidelines for choosing the training batch size B




From a theoretical perspective, we show ...
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(1) ... that under mild conditions, the connectivity loss is differentiable

(2) ... metric-entropy based guidelines for choosing the training batch size B

(3) ... “densification” effects occur for samples, N, larger than the training batch size B




Connectivity loss

From a theoretical perspective, we show ...

L1y IN |/ | ENC 4T—> Dec |— --- + Connectivity loss
N>B PH

(1) ... that under mild conditions, the connectivity loss is differentiable

(2) ... metric-entropy based guidelines for choosing the training batch size B

(3) ... “densification” effects occur for samples, N, larger than the training batch size B

Intuitively, during training ...

... the reconstruction loss controls what is worth capturing
... the connectivity loss controls how to topologically organize the latent space



Experiments - Task: One-class learning

Auxiliary
unlabled data
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Experiments - Task: One-class learning

Auxiliary
unlabled data

PH

ge |~ Rec|-, |+ Connectivity loss (with fixed scale )

Trained only once (e.g., on CIFAR-10 without labels)

KDE-inspired one-class "learning"
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Experiments - Task: One-class learning

Auxiliary
unlabled data
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Trained only once (e.g., on CIFAR-10 without labels)

KDE-inspired one-class "learning"

One-class samples
HE N

- Jo

\ \
AT

M

~
H <.

r=1/2

’
4 \
4 \
I \
-~
I~
v |
\ 1
- -

—s\ 1

<

1 N
~=-=-"

\
lll \
- N '
I

1

Computation of a one-class score

/'— ~\
' N\
V4 AY
y; \
In-class \
- r~ . ]
’ \ N
V4 \ 1
. ’ ‘\ vem=s !
' ll \’.\l ,(\
® 9 0 H <® _-7
I} == \
\ | ’
O f-cl B o B !
ut-ofr-class Se___.¥ '
-0 ,
\\ R
\h_—’

Count #samples falling into balls of radius 7,
anchored at the one-class instances =




& AUROC

CIFAR-10 (AE trained on CIFAR-100)

Results - Task: One-class learning
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Training batch size: B = 100
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CIFAR-10 (AE trained on CIFAR-100)

Results - Task: One-class learning
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CIFAR-20 (AE trained on CIFAR-10)
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& AUROC

CIFAR-20 (AE trained on CIFAR-10)

Results - Task: One-class learning
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& AUROC

CIFAR-100 (AE trained on CIFAR-10)

Results - Task: One-class learning
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2 AUROC

ImageNet (i.e., evaluation of 1,000 one-class models)

0.8
0.7

0.6

0.5

Results - Task: One-class learning

Low-sample size

A
0.8

ADT [Goland & El-Yaniv, NIPS "18]
DAGMM [Zong et al., ICLR "18]
DSEBM [Zhai et al., ICML "16]
Deep-SVDD [Ruff et al., ICML "18]

0.7
0.6
0.5

o o

N oN

a

= =

& 6o

using one AE trained on CIFAR-10 4" .~

using one AE trained on CIFAR-100 *

Training batch size: B = 100



Come see our poster
#83
at 6.30pm (Pacific Ballroom)

PyTorch code available!
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import torch
import chofer_torchex.pershom as pershom

batch = torch.randn(10,5, requires_grad=True)
batch = batch.to(’cuda’)

non_ess, ess = pershom.vr_persistence_11(batch,?,0)

example_loss = non_ess[:,1].sum()
example_loss.backward()

Ly

https://github.com/c-hofer/COREL_icml2019



