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Noisy Lahel Problem

 Standard Supervised Learning Setting
— Assume: training data {(x;, y;))}\-4, y;: True label

— In practical setting, y; - y;, y;: Noisy label
= High cost and time consuming
= Expert knowledge } Difficulties of label annotation
= Unattainable at scale

 Learning with Noisy Label
— Suffer from poor generalization on test data (VGG-19 on CIFAR-10)
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EXISting Work: Two Directions

» Loss Correction
— Modify the loss £ of all samples before backward step

— Suffer from accumulated noise by the false correction
— Fail to handle heavily noisy data

« Sample Selection (Recent direction)
— Select low-loss (easy) samples as clean samples € for SGD

— Use only partial exploration of the entire training data
— Ignore useful hard samples classified as unclean

| \' \ & e )

= ol 5| (€ D

All corrected S E & Selected | S % %4
samples ) | é [O O O samples - J 3 [O O O

(a) Loss correction (b) Sample selection



« SELFIE (SELectively reFurbIsh unclEan samples)
— Hybrid of loss correction and sample selection
— Introduce refurbishable samples R
« The samples can be “corrected with high precision”
— Modified update equation on mini-batch {(x;, 9:)}>_,
 Correct the losses of

« Combine them with the losses of samples in C
« Exclude the samples notin RU €
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Gonstructionof c and R

* Clean Samples ¢ from M (mini-batch)

— Adopt loss-based separation (Han et al., 2018)
— C « (100 — noise rate)% of low-loss samples in M

« Refurbishable Samples R from M
— R « the samples with consistent label predictions
— Replace its label into the most frequently predicted label
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Evaluation: Noise Type

» Synthetic Noise: pair and symmetric
— Injected two widely used noises

« Realistic Noise

— Built ANIMAL-10N dataset with real-world noise

= Crawled 5 pairs of confusing animals
E.qg., {(cat, lynx), (jaguar, cheetah),...}

= Educated 15 participants for one hour
= Asked the participants to annotate the label

— Summary
# Training | 50,000 Resolution 64x64 (RGB)
# Test 5,000 Noise Rate 8% (estimated)
# Classes |10 Data Created | April 2019

https://dm.kaist.ac.kr/datasets/animal-10n



Best Test Error

Evaluation: Performance

« Results with two synthetic noises (CIFAR-10, CIFAR-100)
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(a) Varying pair noises

« Results with realistic noise (ANIMAL-10N)
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(a) DenseNet (L=25, k=12)
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(b) Varying symmetric noises
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Thank you

Further Details or Questions
Poster Session: Pacific Ballroom #157
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https://dm.kaist.ac.kr/datasets/animal-10n




