Robust Learning from Untrusted Sources J

Nikola Konstantinov ~ Christoph H. Lampert

ICML, June 2019

° European
:rc Research
Council

| INIY Y AUSTRIA

Institute of Science and Technology

Konstantinov, Lampert; IST Austria Robust Learning from Untrusted Sources Poster 156 1/13



Motivation

Collecting data for machine learning applications
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Using multiple data sources

Web crawling
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Motivation

Using multiple data sources

Data from personal devices
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Using multiple data sources

Data from different labs
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Using multiple data sources

Data from different labs
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How can we learn robustly from such data?
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Learning from untrusted sources

Motivation

@ Untrusted sources can provide valuable data for training.

@ Some of these data batches might be corrupted or irrelevant.

Goal
@ Naive approaches are to:

e Simply train on all data.
e Train only on the trusted subset.

@ Can we do better?
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Setup

Learning task

@ Unknown target distribution Dy on X x ).

@ Loss function L: Y x Y — Ry.

@ Want to learn a predictor h: X — ) from a hypothesis class H.
Given

@ Have a small reference dataset:

ST = {(X]Tale) PR (sz;-ra}/r;,';—-,—)} ~ DT

@ Also given m; data points from each source i =1,..., N:

Si = {(Xiay{))v(xrlnﬂyrln,)} ~ Di
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Approach

@ Assign weights o = (v, ..., ap) to the sources, Z,N:l aj =1

@ Minimize the a-weighted empirical loss:

N m;
A R . 1 «— i ;
ha :ar’igerglm €a (h) :arhger;lm ;a;mijzzlL(h (x}),v})

@ Want a small expected loss on the target distribution:

er (ha) = Ep, (L(hax).y))

@ How to decide which sources are trustworthy?
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Approach

@ Discrepancies between the sources (Kifer et al., VLDB 2004; Mohri et al., ALT 2012):

discy; (Dj, D) = sup |ei(h) — eT(h)]
heH

o Small if H does not distinguish between the two learning tasks.

@ Popular in the domain adaptation literature.
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Bound on the expected loss

@ Given a hypothesis set H, let:
o ho = argmin,_y, é4(h)
o h% = argmin,cy e7(h)

@ For any § > 0, with probability at least 1 — ¢:

le7(ha) —er(h7)] <
N

2 Z ajdiscy (D, D) + C (9)
i=1

i(H,L)

Similar bounds in Ben-David et al., ML 2010; Zhang et al., NIPS 2013.
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Algorithm

@ Theory suggests:
e Select & by minimizing:

N Naz
i D;, D A —4

o Find h, by minimizing the a-weighted empirical risk.
o Choose A by cross-validation on the reference dataset.

@ Trade-off between exploiting trusted sources and using all data.
@ In practice, work with the empirical discrepancies:

1 1 T T
discy (Si, St) _,f‘é‘ﬁlm,ZL 3 L(h(x").y") ]
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Experiments

Evaluate empirically on:

e Multitask Dataset of Product Reviews !.
e Animals with Attributes 2 2.

Some clean reference data for a target task is available.

Have other subsets, some of which are corrupted.

Experimented with various manipulations/problems with the data.

!Pentina et al., ICML 2017; McAuley et al., 2015
2Xian et al., TPAMI 2018
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Results
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Figure: Animals with Attributes 2: RGB channels swapped
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Summary

Data from different sources is naturally heterogeneous.
Our method suppresses the effect of corrupted/irrelevant data.

The approach is theoretically justified and shows good empirical performance.

The algorithm can be applied even when the data is private and/or distributed.
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Code available at: https://github.com/NikolaKon1994 /Robust-Learning-from-Untrusted-Sources
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