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Motivations

I 1: Bad Training Labels in Classification
I Supervised: noise in training labels
I makes classifiers inaccurate
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Motivations

I 1: Bad Training Labels in Classification
I Supervised: noise in training labels

I makes classifiers inaccurate
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Observation:
Initial Epochs Can Differentiate
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lterative Trimmed Loss Minimization

Standard approach The trimmed loss approach
0 < arg mgin Z Lo (s;) 0 < arg mein Z Lo (s;)
i€[n] i€

Initially, estimate a model from all samples 9 « arg min Z Lo (s;)
0

Iteratively alternate between i€ln]

Selecting a good set of samples: those with lowest current loss

Sorting
g <« {8[1], .3y S[rn) } where  Lg(sp1)) < Lo(sp2) <.
Estimating a model from a set of currently good samples
Model
n : , Fitting
6 < arg min Z Lo(s;)

1€G



lterative Trimmed Loss Minimization

Works for any existing model setting that has
(a) A loss function for every sample

(b) A way to re-train the model on new samples

Our results:

Theory: Convergence results to the true model, for generalized linear models

Experiment:
deep image classifiers from bad training labels
deep generative models from spurious samples
backdoor attacks



ILFB Experimental Results

Mixed training data:
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Backdoor attacks: ITLM successfully defends against backdoor samples, i.e.,

test-2 accuracy drops to O

test-1 accuracy retained naive training with ITLM
class a — b shape test-1 / test-2 acc. test-1 / test-2 acc.

1 =2 X 90.32 / 97.50 90.31 / 0.10

9 - 4 X 89.83 / 96.30 90.02 / 0.60

6 — 0 L 89.83 / 98.10 89.84 / 1.30

2 — 8 L 90.23 / 97.90 89.70 / 1.20

L test-1: test set with clean images/labels
Pacific Ballroom #152 test-2: adds watermark to all images and changes all labels



