Learning with Bad Training Data via Iterative Trimmed Loss Minimization

Yanyao Shen, Sujay Sanghavi

University of Texas at Austin

Motivations

1 : Bad Training Labels in ClassificationSupervised: noise in training labelsmakes classifiers inaccurate

Systematic label noise: a fraction of "horse" is mis-labeled "bird"

M

Dataset size will not rescue ...

Motivations

1: Bad Training Labels in ClassificationSupervised: noise in training labelsmakes classifiers inaccurate

9: truck

Systematic label noise: a fraction of "horse" is mis-labeled "bird"

Dataset size will not rescue ...

2: Mixed Training Data
Unsupervised: spurious samples give
bad generative models

Motivations

1: Bad Training Labels in Classification Supervised: noise in training labels makes classifiers inaccurate

Systematic label noise: a fraction of "horse" is mis-labeled "bird"

3: Backdoor Attacks

Images classified as `ship'

Images classified as `horse'

2: Mixed Training Data
Unsupervised: spurious samples give
bad generative models

Observation: Initial Epochs Can Differentiate

Iterative Trimmed Loss Minimization

Standard approach

$$\widehat{\theta} \leftarrow \arg\min_{\theta} \sum_{i \in [n]} L_{\theta}(s_i)$$

The trimmed loss approach

$$\widehat{\theta} \leftarrow \arg\min_{\theta} \sum_{i \in S_{\tau n}} L_{\theta}(s_i)$$

Initially, estimate a model from all samples

$$\widehat{\theta} \leftarrow \arg\min_{\theta} \sum_{i \in [n]} L_{\theta}(s_i)$$

Iteratively alternate between

Selecting a good set of samples: those with *lowest current loss*

Sorting

$$\mathcal{G} \leftarrow \{s_{[1]}, \ldots, s_{[\tau n]}\}$$
 where $L_{\theta}(s_{[1]}) \leq L_{\theta}(s_{[2]}) \leq \ldots$

Estimating a model from a set of *currently good* samples

$$\widehat{\theta} \leftarrow \arg\min_{\theta} \sum_{i \in \mathcal{G}} L_{\theta}(s_i)$$

Model Fitting

Iterative Trimmed Loss Minimization

Works for any existing model setting that has

- (a) A loss function for every sample
- (b) A way to re-train the model on new samples

Our results:

Theory: Convergence results to the true model, for generalized linear models

Experiment:

deep image classifiers from bad training labels deep generative models from spurious samples backdoor attacks

ILFB Experimental Results

Mixed training data:

baseline

1st iteration 3rd iteration 5th iteration

Backdoor attacks: ITLM successfully defends against backdoor samples, i.e.,

test-2 accuracy drops to 0 test-1 accuracy retained

class $a \to b$	shape	naive training test-1 / test-2 acc.	with ITLM test-1 / test-2 acc.
$1 \rightarrow 2$	X	90.32 / 97.50	90.31 / 0.10
$9 \rightarrow 4$	X	$89.83 \ / \ 96.30$	$90.02 \ / \ 0.60$
$6 \to 0$	${ m L}$	89.83 / 98.10	89.84 / 1.30
$2 \rightarrow 8$	${ m L}$	$90.23 \ / \ 97.90$	$89.70 \ / \ 1.20$

test-1: test set with clean images/labels

test-2: adds watermark to all images and changes all labels