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Adversarial Examples:

ü Small perturbations added to normal inputs can easily fool a DNN.

original class
adversarial class

Handwritten Digits: MNIST



Natural Images

ü Perturbations are small, imperceptible to human eyes. 

Szegedy et al. 2013, Goodfellow et al. 2014

Adversarial Examples:

Making DNN robust to adversarial examples is crucial !



Core idea: training robust DNNs on adversarial examples.

Adversarial Defense -- Adversarial Training:

Inner Maximization:
• Inner maximization is to generate adversarial examples, by maximizing classification loss (e.g. ℓ(⋅)).
• It is a constrained optimization problem: %& − %&( ≤ *.
• First order method Projected Gradient Descent (PGD) usually gives good solution.

• Min-max formulation:
min.
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where, %&( is a natural (clean) training sample, >& is the label of %&(.

Outer Minimization:
• Outer minimization is to train a robust model on adversarial examples generated in the inner maximization.
• It is hugely influenced by how well the maximization is solved.



Convergence Quality of Adversarial Training Examples:

Question: How to measure the convergence quality of the inner maximization?

Definition ( First-Order Stationary Condition (FOSC))

Given a data sample !" ∈ $, let !% be an intermediate example found at the k'( step of
the inner maximization. The First-Order Stationary Condition of !% is

) !% = max.∈/ ! − !%, ∇.3(5, !%) ,

where χ = !| ! − !" 9 ≤ ; is the input domain of the ;-ball around normal
example !", 3 5, !% = ℓ(ℎ5 !%, > ), and ⋅ is the inner product.

FOSC:
• A smaller value of ) !% indicates a better solution of the inner maximization, or equivalently,

better convergence quality of the adversarial example !%.
• It has a closed-form solution.



Closed-form Solution of FOSC:
FOSC have the following closed-form solution:

! "# = max(∈* " − "#, ∇(.(0, "#)

• The last equality is because the dual norm of max ⋅ is the L4-norm under ∞ case.

• ! "# = 0 indicates "# is the optimal solution, and can be achieved when:
1. ∇9. :, x; = 0: x; is a stationary point in the interior of χ.
2. x; − x> = ϵ ⋅ sign(∇9f :, x; ): local maximum point of f :, x; is reached on the 

boundary of χ.

= max(∈* " − "> + "> − "#, ∇(.(0, "#)
= max(∈* " − ">, ∇(.(0, "#) + "# − ">, −∇(.(0, "#)
= F ⋅ ∇(. 0, "# 4 − "# − ">, ∇(.(0, "#)



FOSC View of Adversarial Strength:

• The lower the FOSC, the lower the 
accuracy, and the higher the loss.
Meaning the stronger attack

• The closer FOSC to 0, the stronger the 
attack. While the loss varies a large range.

FOSC provides a comparable and consistent measurement of adversarial strength.



FOSC View of Adversarial Robustness:

• Adversarial Training with different settings for PGD-
based inner maximization.

• PGD step size: PGD-
!
" / PGD-

!
# produces the best robustness,

their FOSC values are also concentrated around 0.

• PGD step number: similar robustness, with PGD-20/30 are
slightly better, reflected by the distribution of FOSC.

• Loss distributions are similar for different robustness.FOSC is a good and reliable indicator of 
the final robustness



FOSC View of Adversarial Training Process:

• Standard adversarial training overfits to strong PGD adversarial examples at
the early stage.

• Simply use weak attack FGSM at the early stage can improve robustness.

• Improvement in robustness is also reflected in FOSC distribution.



Proposed Dynamic Adversarial Training (Dynamic):
Adversarial training with dynamic convergence control of the inner maximization:

gradually increasing convergence quality, i.e., gradually decreasing FOSC.

Comparing to Standard Adv Training:
ü At each perturbation step
ü Monitoring the FOSC value
ü Stopping the perturbation process

once FOSC ≤ "# (enabled by control
vector $)



Convergence Analysis:
Assumption 1. !(#; %) satisfies the gradient Lipschitz conditions as follows

sup
*

∇,! -, % − ∇,! -0, % 1 ≤ 3,, - − -0 1

sup
,

∇,! -, % − ∇,! -, %0 1 ≤ 3,* % − %0 1

sup
*

∇*! -, % − ∇4! -0, % 1 ≤ 3,, - − -0 1

Assumption 2. !(#; %) is locally 5-strongly concave in the gradient Lipschitz conditions as 
follows 67 = {%: %7 − %7; < ≤ =} for all ? ∈ A , i.e., for any %B, %1 ∈ 67, it holds that

! -, %B ≤ ! -, %1 + ∇*! #, %1 , %B − %1 −
5
2
%B − %1 1

1

Assumption 3. The variance of the stochastic gradient E(-) is bounded by a constant F1 > 0,

I[ E - − ∇3K(-) 1
1] ≤ F1



Convergence Theorem:
Theorem 1. Under certain assumptions, let ∆= #$ %& − ()*

+
#$ % . If the step size of the outer

minimization is set to -. = ()* /
0
, ∆

0234
. Then the output of Dynamic Adversarial Training

satisfies
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where # = 0EF0EF
G

+ #++ .

• If the inner maximization is solved up to a precision that FOSC is less than C, Dynamic can 

converge to a first-order stationary point at a sublinear rate up to a precision of H0EF
3 I
G

.

• If C is sufficiently small such that H0EF
3 I
G

small enough, Dynamic can find a robust model %4.



Robustness Evaluation of Dynamic:

• Network: 4-layer CNN on MNIST and 8-layer CNN on CIFAR-10
• ! = #. % for MNIST and ! = &/()) for CIFAR-10 (Standard defense settings)
• Better robustness than the state-of-the-art against 4 white-box and black-box attacks



Benchmarking the State-of-the-art on WideResNet:

• Network: WideResNet (10 times wider than ResNet)
• ! = #/%&& for CIFAR-10 (Standard defense settings)
• Achieving the state-of-the-art robustness against various attacks on CIFAR-10



FOSC View of Dynamic Adversarial Training:

ü Dynamic has more precise control over the convergence quality with FOSC criterion.

• More concentrated FOSC distributions at each stages of training. 

• More separated FOSC distributions at different stages of training.
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