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Adversarial Examples:

Handwritten Digits: MNIST
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adversarial class

v Small perturbations added to normal inputs can easily fool a DNN.

normal




Adversarial Examples:

Natural Images
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“panda” small adversarial “gibbon”
57.7% confidence perturbations 99.3 % confidence

v’ Perturbations are small, imperceptible to human eyes.

Making DNN robust to adversarial examples is crucial !

Szeaedv et al. 2013 Goodfellow et al. 2014



Adversarial Defense -- Adversarial Training:

Core idea: training robust DNNs on adversarial examples.

* Min-max formulation:
. 1on
min—2=; ~max £(hg(x;y;))
0 lxi=x?]| < €
where, x} is a natural (clean) training sample, y; is the label of x; .

Inner Maximization:

* Inner maximization is to generate adversarial examples, by maximizing classification loss (e.g. £(+)).
* |tis a constrained optimization problem: ||xl — xlo|| < €.

* First order method Projected Gradient Descent (PGD) usually gives good solution.

Outer Minimization:
e Quter minimization is to train a robust model on adversarial examples generated in the inner maximization.

* Itis hugely influenced by how well the maximization is solved.



Convergence Quality of Adversarial Training Examples:

Question: How to measure the convergence quality of the inner maximization?

Given a data sample x° € X, let x* be an intermediate example found at the kth step of
the inner maximization. The First-Order Stationary Condition of x¥ is

c(x*) = max (x —x*,V,f(0,x9)),

XEY

where x = {x|||x — x°||c < €} is the input domain of the e-ball around normal
example x°, f(B,xk) = {’(hg(xk,y)), and (-) is the inner product.

FOSC:

 Asmaller value of c(xk) indicates a better solution of the inner maximization, or equivalently,
better convergence quality of the adversarial example x*.

* It has a closed-form solution.



Closed-form Solution of FOSC:

FOSC have the following closed-form solution:

c(x*) = max (x — x¥, V,f(0,x"))

XEx

= max (x —x0 4+ x% — x*, V,f(6,x5))
xex

= max (x — x0,V,£(0,x%)) + (x* — x° =V, f (6, x*))
xXex

= e flwef (0.2, — (v~ x,9.0,x)

* The last equality is because the dual norm of max(-) is the L;-norm under oo case.

. c(xk) = 0 indicates x* is the optimal solution, and can be achieved when:
1. fo(ﬂ,xk) = 0:xKXis a stationary point in the interior of ¥.
2. xK—x%=e¢- sign(VXf(O, Xk)): local maximum point of f(ﬂ,xk) is reached on the
boundary of y.



FOSC View of Adversarial Strength:
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(a) Accuracy, Loss vs. FOSC (b) FOSC, Loss vs. Step
* The lower the FOSC, the lower the * The closer FOSC to O, the stronger the
accuracy, and the higher the loss. attack. While the loss varies a large range.

Meaning the stronger attack

FOSC provides a comparable and consistent measurement of adversarial strength.




FOSC View of Adversarial Robustness:
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FOSC is a good and reliable indicator of

the final robustness
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(e) Loss vs. Step size (f) Loss vs. Step number

Adversarial Training with different settings for PGD-
based inner maximization.

 PGD step size: PGD-%/ PGD-Z produces the best robustness,
their FOSC values are also concentrated around O.

* PGD step number: similar robustness, with PGD-20/30 are
slightly better, reflected by the distribution of FOSC.

* Loss distributions are similar for different robustness.



FOSC View of Adversarial Training Process:
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e Standard adversarial training overfits to strong PGD adversarial examples at
the early stage.

* Simply use weak attack FGSM at the early stage can improve robustness.

* Improvement in robustness is also reflected in FOSC distribution.



Proposed Dynamic Adversarial Training (Dynamic):

Adversarial training with dynamic convergence control of the inner maximization:
gradually increasing convergence quality, i.e., gradually decreasing FOSC.

Algorithm 1 Dynamic Adversarial Training

Input: Network hg, training data S, initial model pa-
rameters 6°, step size 7);, mini-batch B, maximum FOSC
value ¢y,qz, training epochs 7', FOSC control epoch 77,
PGD step K, PGD step size «r, maximum perturbation e.

foit = 0t T — 186 Comparing to Standard Adv Training:
G- mﬁ(cmﬁx b cmax/T",0) v' At each perturbation step
or each batch x% do .
V =1  # control vector of all elements is 1 ’ v Monltorlng the FOSC value
while V>0 &% <K do _ v’ Stopping the perturbation process
Xe! - =Xg a - sign(Vxl(he(x5),y))
xg = clip(xE,x0, — €,x% + ) once FOSC < ¢, (enabled by control
V =1g(c(x}.5) <c) #The element of V vector V)
becomes 0 at which FOSC is smaller than c;
end while
Ot = @' —n,g(0') #g(0?) : stochastic gradient
end for

end for




Convergence Analysis:

Assumption 1. f(0; x) satisfies the gradient Lipschitz conditions as follows
sup [[Vof(8,x) = Vof (8", x|l < Lggll6 — 6'l];

X

sup Vof(8,x) —Vof (6,x")l; < Loxllx — x|l

sup fo(H,x) _ fo(H’,x)llz = LBQ 6—0’ 2

X

Assumption 2. f(0; x) is locally u-strongly concave in the gradient Lipschitz conditions as
follows y; = {x: ||xl- — x} ||oo < €}foralli € |n], i.e., forany x;, x, € y;, it holds that

u
f(0,x1) < f(0,x2) + (Vif(0,x2), %1 —x2) — §||x1 — x,|15
Assumption 3. The variance of the stochastic gradient g(8) is bounded by a constant ¢* > 0,

E[llg(6) — VLs(®)II3] < o?



Convergence Theorem:

Theorem 1. Under certain assumptions, let A= Ls(0°) — mgin L¢(0). If the step size of the outer

e e . (1 A . . . .
minimization is set to n; = min ( ) . Then the output of Dynamic Adversarial Training

L’ Lo?T
satisfies
1o LA 512§
= ) ElIVLs(09)I3] < 40 |- + =22,
T t=0 T H

where L = (% + LQQ) :

e If the inner maximization is solved up to a precision that FOSC is less than 6, Dynamic can
5L, 8

converge to a first-order stationary point at a sublinear rate up to a precision OfT

2

. . . 5L5.,0 . .
 If § is sufficiently small such that % small enough, Dynamic can find a robust model 87 .



Robustness Evaluation of Dynamic:

Table I. White-box robusiness (accuracy (%) on white-box test attacks) of different defense models on MNIST and CIFAR-10 datasets.

MNIST CIFAR-10
Defense Clean FGSM PGD-10 PGD-20 C&W,. | Clean FGSM PGD-10 PGD-20 C&W..
Unsecured 9920  14.04 0.0 0.0 0.0 89.39 22 0.0 0.0 0.0

Standard 9761 9471 91.21 90.62 91.03 66.31 48.65 44.39 40,02 36.33
Curriculum 9862 9551 91.24 90.65 91.12 7240 5047 45.54 40.12 35.77
Dynamic 9796 9534 91.63 91.27 9147 | 72.17 5281 48.06 42.40 37.26

—— -— —_— R — S—— S — e ———————————————————————————————————————

Table 2. Black-box robustness (accuracy (%) on black-box test attacks) of different defense models on MNIST and CIFAR- 10 datasets.

MNIST CIFAR-10
Defense  pGSM PGD-10 PGD-20  C&W, | FGSM  PGD-10  PGD20  C&W.
Standard 096.12 95.73 95.73 97.20 65.65 65.80 65.60) 66.12
Curriculum 96.59 9S.87 96.09 97.52 71.25 71.44 71.13 71.94
Dynamic 97.60 97.01 96.97 98.36 71.95 72.15 72.02 72.85

* Network: 4-layer CNN on MINIST and 8-layer CNN on CIFAR-10
e €= 0.3 for MNIST and € = 8/255 for CIFAR-10 (Standard defense settings)
e Better robustness than the state-of-the-art against 4 white-box and black-box attacks



Benchmarking the State-of-the-art on WideResNet:

Table 3. White-box robustness (%) of different defense models on
CIFAR-10 dataset using WideResNet setting in Madry’s baselines.

Defense Clean FGSM PGD-20 C&W.
Madry’s 87.3 56.1 45.8 46.8
Curriculum | 7743  57.17 46.06 42.28
Dynamic 85.03 63.53 48.70 47.27

 Network: WideResNet (10 times wider than ResNet)
« € = 8/255 for CIFAR-10 (Standard defense settings)
* Achieving the state-of-the-art robustness against various attacks on CIFAR-10



FOSC View of Dynamic Adversarial Training:
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v' Dynamic has more precise control over the convergence quality with FOSC criterion.

* More concentrated FOSC distributions at each stages of training.

* More separated FOSC distributions at different stages of training.
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