On the Convergence and Robustness of Adversarial Training

Yisen Wang*, Xingjun Ma*
James Bailey, Jinfeng Yi, Bowen Zhou, Quanquan Gu

JD.com University of Melbourne UCLA

Adversarial Examples:

Handwritten Digits: MNIST

✓ Small perturbations added to normal inputs can easily fool a DNN.

Adversarial Examples:

✓ Perturbations are small, imperceptible to human eyes.

Making DNN robust to adversarial examples is crucial!

Adversarial Defense -- Adversarial Training:

Core idea: training robust DNNs on adversarial examples.

Min-max formulation:

$$\min_{\boldsymbol{\theta}} \frac{1}{n} \sum_{i=1}^{n} \max_{\|\boldsymbol{x}_i - \boldsymbol{x}_i^0\| \le \epsilon} \ell(h_{\boldsymbol{\theta}}(\boldsymbol{x}_i, \boldsymbol{y}_i))$$

where, x_i^0 is a natural (clean) training sample, y_i is the label of x_i^0 .

Inner Maximization:

- Inner maximization is to generate adversarial examples, by maximizing classification loss (e.g. $\ell(\cdot)$).
- It is a **constrained** optimization problem: $||x_i x_i^0|| \le \epsilon$.
- First order method Projected Gradient Descent (PGD) usually gives good solution.

Outer Minimization:

- Outer minimization is to train a robust model on adversarial examples generated in the inner maximization.
- It is hugely influenced by how well the maximization is solved.

Convergence Quality of Adversarial Training Examples:

Question: How to measure the convergence quality of the inner maximization?

Definition (First-Order Stationary Condition (FOSC))

Given a data sample $x^0 \in X$, let x^k be an intermediate example found at the k^{th} step of the inner maximization. The First-Order Stationary Condition of x^k is

$$c(x^k) = \max_{x \in \chi} \langle x - x^k, \nabla_x f(\boldsymbol{\theta}, x^k) \rangle,$$

where $\chi = \{x | \|x - x^0\|_{\infty} \le \epsilon\}$ is the input domain of the ϵ -ball around normal example x^0 , $f(\theta, x^k) = \ell(h_{\theta}(x^k, y))$, and $\langle \cdot \rangle$ is the inner product.

FOSC:

- A smaller value of $c(x^k)$ indicates a better solution of the inner maximization, or equivalently, better convergence quality of the adversarial example x^k .
- It has a closed-form solution.

Closed-form Solution of FOSC:

FOSC have the following closed-form solution:

$$c(x^{k}) = \max_{x \in \chi} \langle x - x^{k}, \nabla_{x} f(\boldsymbol{\theta}, x^{k}) \rangle$$

$$= \max_{x \in \chi} \langle x - x^{0} + x^{0} - x^{k}, \nabla_{x} f(\boldsymbol{\theta}, x^{k}) \rangle$$

$$= \max_{x \in \chi} \langle x - x^{0}, \nabla_{x} f(\boldsymbol{\theta}, x^{k}) \rangle + \langle x^{k} - x^{0}, -\nabla_{x} f(\boldsymbol{\theta}, x^{k}) \rangle$$

$$= \epsilon \cdot \|\nabla_{x} f(\boldsymbol{\theta}, x^{k})\|_{1} - \langle x^{k} - x^{0}, \nabla_{x} f(\boldsymbol{\theta}, x^{k}) \rangle$$

- The last equality is because the dual norm of $\max(\cdot)$ is the L_1 -norm under ∞ case.
- $c(x^k) = 0$ indicates x^k is the optimal solution, and can be achieved when:
 - 1. $\nabla_{\mathbf{x}} f(\mathbf{\theta}, \mathbf{x}^{\mathbf{k}}) = 0$: $\mathbf{x}^{\mathbf{k}}$ is a stationary point in the interior of χ .
 - 2. $x^k x^0 = \epsilon \cdot sign(\nabla_x f(\theta, x^k))$: local maximum point of $f(\theta, x^k)$ is reached on the boundary of χ .

FOSC View of Adversarial Strength:

- (a) Accuracy, Loss vs. FOSC
- The lower the FOSC, the lower the accuracy, and the higher the loss.
 Meaning the stronger attack

- (b) FOSC, Loss vs. Step
- The closer FOSC to 0, the stronger the attack. While the loss varies a large range.

FOSC View of Adversarial Robustness:

FOSC is a good and reliable indicator of the final robustness

Adversarial Training with different settings for PGD-based inner maximization.

- **PGD step size**: PGD- $\frac{\epsilon}{2}$ / PGD- $\frac{\epsilon}{4}$ produces the best robustness, their FOSC values are also concentrated around 0.
- **PGD step number**: similar robustness, with PGD-20/30 are slightly better, reflected by the distribution of FOSC.
- Loss distributions are similar for different robustness.

FOSC View of Adversarial Training Process:

- Standard adversarial training **overfits** to strong PGD adversarial examples at the **early stage**.
- Simply use weak attack FGSM at the early stage can improve robustness.
- Improvement in robustness is also reflected in FOSC distribution.

Proposed Dynamic Adversarial Training (Dynamic):

Adversarial training with dynamic convergence control of the inner maximization: gradually increasing convergence quality, i.e., gradually decreasing FOSC.

```
Algorithm 1 Dynamic Adversarial Training
    Input: Network h_{\theta}, training data S, initial model pa-
    rameters \theta^0, step size \eta_t, mini-batch \mathcal{B}, maximum FOSC
    value c_{max}, training epochs T, FOSC control epoch T',
    PGD step K, PGD step size \alpha, maximum perturbation \epsilon.
    for t=0 to T-1 do
        c_t = \max(c_{\max} - t \cdot c_{\max}/T', 0)
        for each batch \mathbf{x}_{B}^{0} do
             V = 1_{\mathcal{B}} # control vector of all elements is 1
             while \sum V > 0 \& k < K do
                 \mathbf{x}_{\mathcal{B}}^{k+1} = \mathbf{x}_{\mathcal{B}}^{k} + V \cdot \alpha \cdot \operatorname{sign}(\nabla_{\mathbf{x}} \ell(h_{\boldsymbol{\theta}}(\mathbf{x}_{\mathcal{B}}^{k}), y))\mathbf{x}_{\mathcal{B}}^{k} = \operatorname{clip}(\mathbf{x}_{\mathcal{B}}^{k}, \mathbf{x}_{\mathcal{B}}^{0} - \epsilon, \mathbf{x}_{\mathcal{B}}^{0} + \epsilon)
                  V = \mathbb{1}_{\mathcal{B}}(c(\mathbf{x}_{1...\mathcal{B}}^k) \le c_t) # The element of V
                 becomes 0 at which FOSC is smaller than ct
             end while
             \boldsymbol{\theta}^{t+1} = \boldsymbol{\theta}^t - \eta_t \mathbf{g}(\boldsymbol{\theta}^t) \quad \# \mathbf{g}(\boldsymbol{\theta}^t) : stochastic gradient
        end for
```

end for

Comparing to Standard Adv Training:

- ✓ At each perturbation step
- ✓ Monitoring the FOSC value
- ✓ Stopping the perturbation process once FOSC $\leq c_t$ (enabled by control vector V)

Convergence Analysis:

Assumption 1. $f(\theta; x)$ satisfies the gradient Lipschitz conditions as follows

$$\sup_{x} \|\nabla_{\theta} f(\theta, x) - \nabla_{\theta} f(\theta', x)\|_{2} \leq L_{\theta\theta} \|\theta - \theta'\|_{2}$$

$$\sup_{\theta} \|\nabla_{\theta} f(\theta, x) - \nabla_{\theta} f(\theta, x')\|_{2} \leq L_{\theta x} \|x - x'\|_{2}$$

$$\sup_{x} \|\nabla_{x} f(\theta, x) - \nabla_{x} f(\theta', x)\|_{2} \leq L_{\theta\theta} \|\theta - \theta'\|_{2}$$

Assumption 2. $f(\theta; x)$ is locally μ -strongly concave in the gradient Lipschitz conditions as follows $\chi_i = \{x: \|x_i - x_i^0\|_{\infty} \le \epsilon\}$ for all $i \in [n]$, i.e., for any $x_1, x_2 \in \chi_i$, it holds that

$$f(\theta, x_1) \le f(\theta, x_2) + \langle \nabla_x f(\theta, x_2), x_1 - x_2 \rangle - \frac{\mu}{2} ||x_1 - x_2||_2^2$$

Assumption 3. The variance of the stochastic gradient $g(\theta)$ is bounded by a constant $\sigma^2 > 0$,

$$\mathbb{E}[\|g(\theta) - \nabla L_S(\theta)\|_2^2] \le \sigma^2$$

Convergence Theorem:

Theorem 1. Under certain assumptions, let $\Delta = L_S(\theta^0) - \min_{\theta} L_S(\theta)$. If the step size of the outer minimization is set to $\eta_t = \min\left(\frac{1}{L}, \sqrt{\frac{\Delta}{L\sigma^2 T}}\right)$. Then the output of **Dynamic Adversarial Training** satisfies

$$\frac{1}{T} \sum_{t=0}^{T-1} \mathbb{E}[\|\nabla L_S(\theta^t)\|_2^2] \le 4\sigma \sqrt{\frac{L\Delta}{T}} + \frac{5L_{\theta x}^2 \delta}{\mu},$$

where
$$L = \left(\frac{L_{\theta x}L_{\theta x}}{\mu} + L_{\theta \theta}\right)$$
.

- If the inner maximization is solved up to a precision that FOSC is less than δ , **Dynamic** can converge to a first-order stationary point at a sublinear rate up to a precision of $\frac{5L_{\theta x}^2\delta}{\mu}$.
- If δ is sufficiently small such that $\frac{5L_{\theta x}^2\delta}{\mu}$ small enough, **Dynamic** can find a robust model θ^T .

Robustness Evaluation of Dynamic:

Table 1. White-box robustness (accuracy (%) on white-box test attacks) of different defense models on MNIST and CIFAR-10 datasets.

Defense	MNIST					CIFAR-10				
	Clean	FGSM	PGD-10	PGD-20	$C\&W_{\infty}$	Clean	FGSM	PGD-10	PGD-20	C&W _∞
Unsecured	99.20	14.04	0.0	0.0	0.0	89.39	2.2	0.0	0.0	0.0
Standard	97.61	94.71	91.21	90.62	91.03	66.31	48.65	44.39	40.02	36.33
Curriculum	98.62	95.51	91.24	90.65	91.12	72.40	50.47	45.54	40.12	35.77
Dynamic	97.96	95.34	91.63	91.27	91.47	72.17	52.81	48.06	42.40	37.26

Table 2. Black-box robustness (accuracy (%) on black-box test attacks) of different defense models on MNIST and CIFAR-10 datasets

Defense		M	VIST		CIFAR-10			
	FGSM	PGD-10	PGD-20	C&W _∞	FGSM	PGD-10	PGD-20	C&W _∞
Standard	96.12	95.73	95.73	97.20	65.65	65.80	65.60	66.12
Curriculum	96.59	95.87	96.09	97.52	71.25	71.44	71.13	71.94
Dynamic	97.60	97.01	96.97	98.36	71.95	72.15	72.02	72.85

- Network: 4-layer CNN on MNIST and 8-layer CNN on CIFAR-10
- $\epsilon=0.3$ for MNIST and $\epsilon=8/255$ for CIFAR-10 (Standard defense settings)
- Better robustness than the state-of-the-art against 4 white-box and black-box attacks

Benchmarking the State-of-the-art on WideResNet:

Table 3. White-box robustness (%) of different defense models on CIFAR-10 dataset using WideResNet setting in Madry's baselines.

Defense	Clean	FGSM	PGD-20	C&W _∞
Madry's	87.3	56.1	45.8	46.8
Curriculum	77.43	57.17	46.06	42.28
Dynamic	85.03	63.53	48.70	47.27

- Network: WideResNet (10 times wider than ResNet)
- $\epsilon = 8/255$ for CIFAR-10 (Standard defense settings)
- Achieving the state-of-the-art robustness against various attacks on CIFAR-10

FOSC View of Dynamic Adversarial Training:

- ✓ Dynamic has more precise control over the convergence quality with FOSC criterion.
 - More concentrated FOSC distributions at each stages of training.
 - More separated FOSC distributions at different stages of training.

Thank you!

Poster @ Pacific Ballroom #151 Wed 6:30 pm

eewangyisen@gmail.com qgu@cs.ucla.edu