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Differential Privacy

Definition (DMNS06)

A privacy mechanism {µX : X ∈ X n} satisfies ε-Differential
Privacy (ε-DP) if for all measurable B and adjacent X,X′ ∈ X n,

µX(B) ≤ µX′(B) exp(ε).

Distribution of outputs does not change much if the input
changes in one entry
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Exponential Mechanism [MT07]

Given an objective function ξX : Y → R for any X ∈ X n

The Exponential Mechanism samples b̃ from the density

fX(b) ∝ exp
[( ε

2∆

)
ξX(b)

]
and satisfies ε-DP.
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Utility of Exponential Mechanism

Theorem
Let (Xi)

∞
i=1 such that Xi ∈ X . Define ξn(b) := ξX1,...,Xn(b) for

any b ∈ Rp. Assume that

− 1
nξn is twice differentiable, α-strongly convex, and has

constant sensitivity ∆

the minimizers b̂ converge to some b∗

− 1
nξ
′′(b̂)→ Σ, a positive definite matrix

Then,
√

n(b̃− b̂)
d→ Np

(
0,
(

2∆

ε

)
Σ

)
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Consequences

Large class of objective functions

Noise introduced by Exp Mech is asymptotically normal
and O(1/

√
n).

Same order as statistical estimation error

Results in increased asymptotic variance compared to
non-private estimator

Unifies the results of [WZ10, WFS15, FGWC16]

5



ICML 2019

awan@psu.edu

Background

Utility

Extensions

References

Extensions to Hilbert Spaces

Require non-trivial base measure. Propose Gaussian
process

Give analogous utility result in infinite-dimensional spaces.
GP must be chosen carefully.

Apply Exp Mech to release DP functional principal
components, extending [CSS13]
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