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Distribution Learning

• [k] = {0, 1, 2, ..., k − 1}, a discrete set of size k .

• p : an unknown distribution over [k].

• n users, user i has an independent Xi ∼ p.

• Estimator p̂ : [k]n → a distribution over [k].

Goal: For all p, with probability at least 2/3

`1(p̂, p) =
∑
x∈[k]

|p̂(x)− p(x)| ≤ α.

n = Θ

(
k

α2

)
.
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Frequency/ Heavy Hitter Estimation

• [k] = {0, 1, 2, ..., k − 1} is a discrete set of size k .

• n users, user i has a data point Xi ∈ [k].

• No distribution assumption.

• ∀x ∈ [k],Nx =
∑

i 1{Xi = x}.

Goal: For all X n, with probability at least 2/3

`∞(p̂, p) = max
x∈[k]

∣∣∣∣p̂(x)− Nx

n

∣∣∣∣ ≤ β.
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Simultaneous Message Passing (SMP) Protocal

Each user sends a message Yi = Wi (Xi ) ∈ Y
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Resources to Consider

• Privacy. Data may contain sensitive information.

• Communication. How many bits are communicated from

each user?

• Shared Randomness. Is shared randomness available

among users?

• Symmetry. Are the channels symmetric?
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Local Differential Privacy (LDP)

[Warner, 1965, Dwork et al., 2006, Kasiviswanathan et al., 2011,

Erlingsson et al., 2014]

W is ε-LDP if for all x , x ′ ∈ X , and y ∈ Y,

sup
y∈Y

W (y |x)

W (y |x ′)
≤ eε.

We will focus on the case of high privacy. (ε = O(1))

5



Private and Shared Randomness

Private-coin protocols:

U1,U2, ...,Un independent

Wi is decided by Ui .

Public-coin protocols:

U: random bits generated at R, available to all players.

Wi : determined by U.

0.5 round of interaction.
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Symmetric, Private-coin Schemes



Distribution Learning

Theorem

[Acharya et al., 2019] Hadamard Response, which is a symmetric

scheme without shared randomness, achieves the following sample

complexity with only log k bits of communication from each user:

Θ

(
k2

α2ε2

)

7



Heavy Hitter Estimation Algorithms

[Bassily and Smith, 2015, Bassily et al., 2017, Hsu et al., 2012,

Wang and Blocki, 2017, Bun et al., 2018, Zhu et al., 2019] :

Finding the heavy hitters under LDP constraints. Sample complexity:

n = Θ

(
log k

α2ε2

)

Require interaction or shared randomness.
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Optimality of HR for Heavy Hitter Estimation

Theorem

[Acharya and Sun, 2019] To estimate each of the frequencies up to `∞
accuracy α, HR uses

n = O

(
log k

α2ε2

)
.

samples.
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Communication Lower Bound for Symmetric Schemes

Theorem

[Acharya and Sun, 2019] Without shared randomness, any optimal

symmetric schemes for distribution learning/ frequency estimation must

require at least log k bits of communication.
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Communication Lower Bound for Symmetric Schemes

Theorem

[Acharya and Sun, 2019] Without shared randomness, any optimal

symmetric schemes for distribution learning/ frequency estimation must

require at least log k bits of communication.

Question: What if we allow asymmetric schemes, or

schemes with shared randomness?

10



One-bit Suffices for Schemes with Shared-Randomness

Theorem

[Bassily and Smith, 2015] In the regime where ε = O(1), for any locally

private algorithm, using shared-randomness, there exists a locally

private scheme with only one-bit communication which has the same

privacy guarantee and the same performance, up to constant factors.
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One-bit Suffices for Schemes with Shared-Randomness

Theorem

[Bassily and Smith, 2015] In the regime where ε = O(1), for any locally

private algorithm, using shared-randomness, there exists a locally

private scheme with only one-bit communication which has the same

privacy guarantee and the same performance, up to constant factors.

Question: Is shared-randomness necessary to reduce

communication from users?

11



Optimal One-bit Scheme without Shared Randomness

For distribution learning,

NO!

Theorem

[Acharya and Sun, 2019] There exists a private-coin scheme with only

one bit communication from each user that achieve optimal performance

for distribution learning.
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One Bit is not Enough for Heavy Hitter Estimation

For heavy hitter estimation,

YES!

Theorem

[Acharya and Sun, 2019] Any optimal private-coin schemes for frequency

estimation must require at least min{log k , log n} bits of communication.
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Summary of Results
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