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Differential Privacy [DMNSO6]
Algorithm A is a-differentially private if
 for all neighboring data sets x and x'

* for all possible outputs S,
Pr[A (x) € S] <e®-Pr[A(x") € S]
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Differential Privacy [DMNSO6]
Algorithm A is a-differentially private if
 for all neighboring data sets x and x'
* for all possible outputs S,
Pr[A (x) € S] <e®-Pr[A(x") € S]

a = 0: perfect privacy
no utility

As a increases, less privacy
more utility
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Differential Privacy [DMNSO6]
Algorithm A is a-differentially private if

. O‘ftbp”j‘ * for all neighboring data sets x and x’
B | SR . for all possible outputs S,
is close Pr[A (x) € S] < e® - Pr[A(x") € S]
a = 0: perfect privacy
no utility
As « increases, less privacy
more utility

Allows utility-

privacy trade-off
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Differential Privacy Under Sliding Window

* Differential privacy overview of Apple

“Apple retains the collected data for a
maximum of three months” Goal of this paper

Input—>0 9,6 8, 4,7, 3,8, 4,2, 1,3, 2)

* Formalize privacy under
sliding window model

Sliding windows —> | 9, 6, 8, 4,

8, 4,7, 3,
38 4 * Design sublinear space
5 4 21 private algorithms in the
2.1, 3, 2 sliding window model
|

Output—> 27 22 22 15 8
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e x be an n-dimensional vector

* Qutput allindicesi € [n], x; = ¢ |l x |l; and estimate of x;
* Allowed to accepti € [n]if x; = (¢p—p) ll x |l

Main Theorem
There is an efficient o(w) space (€, d)-DP algorithm that returns

a set of indices, 7, and estimates X; for i € 7,
e Ifx; =l x|ly,then|x; —%;|<pllxll{ +0 (EIOgW) privacy

* Doesnotincludeanyiifx; < (@ —-3p)llxll;+0 (%logw)




Other Results and Open Problems

* Algorithm extends to continual observation under sliding window

* Current non-private framework do not extend to privacy
* Lower bound using standard packing argument

* Space lower bound on estimating £,-heavy hitters
* Reduction to communication complexity problem



Other Results and Open Problems

* Algorithm extends to continual observation under sliding window

* Current non-private framework do not extend to privacy
* Lower bound using standard packing argument

* Space lower bound on estimating £,-heavy hitters
* Reduction to communication complexity problem

Characterize what is possible to compute
privately under the sliding window model



