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Differential Privacy [DMNS06]
Algorithm " is #-differentially private if

• for all neighboring data sets ! and !$
• for all possible outputs %,

Pr " ! ∈ S ≤ +, ⋅ Pr " !$ ∈ %
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no utility
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Differential Privacy [DMNS06]
Algorithm " is #-differentially private if

• for all neighboring data sets ! and !$
• for all possible outputs %,

Pr " ! ∈ S ≤ +, ⋅ Pr " !$ ∈ %

Output 
distribution 

is close

Allows utility-
privacy trade-off

# = 0: perfect privacy
no utility

As # increases, less privacy
more utility
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Differential Privacy Under Sliding Window

• Differential privacy overview of Apple
“Apple retains the collected data for a 

maximum of three months” Goal of this paper

• Formalize privacy under 
sliding window model

• Design sublinear space
private algorithms in the 
sliding window model
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Price of
privacy



Other Results and Open Problems

• Algorithm extends to continual observation under sliding window

• Current non-private framework do not extend to privacy
• Lower bound using standard packing argument

• Space lower bound on estimating ℓ"-heavy hitters
• Reduction to communication complexity problem



Other Results and Open Problems

• Algorithm extends to continual observation under sliding window

• Current non-private framework do not extend to privacy
• Lower bound using standard packing argument

• Space lower bound on estimating ℓ"-heavy hitters
• Reduction to communication complexity problem

Characterize what is possible to compute 
privately under the sliding window model


