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Goals

• Give a formal framework for membership attacks

• What is the best possible attack (asymptotically) ?

• Compare white-box vs black-box attacks

• Derive new membership inference attacks
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Notations and assumptions

• Assumption: posterior distribution

• Temperature T represents stochasticity
• T=1: Bayes
• T->0: Average SGD, MAP inference
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Formal results: optimal attack

• Membership posterior:

• Result
M(✓, z1) := P(m1 = 1 | ✓, z1)
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Approximation strategies

• MALT: a global threshold for all samples

• MAST: compute a threshold for each sample

• MATT: simulate influence of sample using Taylor approximation

sMALT(✓, z1) = �`(✓, z1) + ⌧
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Membership inference on CIFAR

=> MATT outperforms MALT

Attack accuracy
n 0� 1 MALT MATT

400 52.1 54.4 57.0
1000 51.4 52.6 54.5
2000 50.8 51.7 53.0
4000 51.0 51.4 52.1
6000 50.7 51.0 51.8
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Comparison with the state of the art

=> State-of-the-art performance
=> Less computationally expensive 

Attack accuracy
n 0� 1 MALT MATT

400 52.1 54.4 57.0
1000 51.4 52.6 54.5
2000 50.8 51.7 53.0
4000 51.0 51.4 52.1
6000 50.7 51.0 51.8

Method Attack accuracy

Näıve Bayes (Yeom et al. [2018]) 69.4
Shadow models (Shokri et al. [2017]) 73.9
Global threshold 77.1

Sample-dependent threshold 77.6

Model Augmentation 0-1 MALT

Resnet101 None 76.3 90.4
Flip, Crop ±5 69.5 77.4
Flip, Crop 65.4 68.0

VGG16 None 77.4 90.8
Flip, Crop ±5 71.3 79.5
Flip, Crop 63.8 64.3
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Large-scale experiments on Imagenet

=> Data augmentation decreases membership attacks accuracy

Attack accuracy
n 0� 1 MALT MATT

400 52.1 54.4 57.0
1000 51.4 52.6 54.5
2000 50.8 51.7 53.0
4000 51.0 51.4 52.1
6000 50.7 51.0 51.8

Method Attack accuracy

Näıve Bayes 69.4
Shadow models 73.9
Global threshold 77.1

Sample-dependent threshold 77.6

Model Augmentation 0-1 MALT

Resnet101 None 76.3 90.4
Flip, Crop ±5 69.5 77.4
Flip, Crop 65.4 68.0

VGG16 None 77.4 90.8
Flip, Crop ±5 71.3 79.5
Flip, Crop 63.8 64.3
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Conclusion

• Black-box attacks as good as white-box attacks 

• Our approximations for membership attacks are state-of-the-art
on two datasets
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