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\ Context: Membership Inference
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\ Membership Inference
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\ | Goals

* Give a formal framework for membership attacks

 What is the best possible attack (asymptotically) ?
* Compare white-box vs black-box attacks

* Derive new membership inference attacks
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. \ ‘ Notations
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\ Notations and assumptions

membership

* Assumption: posterior distribution /

1 n
PO | m1.n, 21.:n) X €XP (—? Zm%(@,zi)

i=1 '\
* Temperature T represents stochasticity

loss

* T=1: Bayes
e T->0: Average SGD, MAP inference
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\ Formal results: optimal attack

* Membership posterior:

e Result
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\ Formal results: optimal attack

* Membership posterior:
MO, z1) :=P(my =1]6,2)

e Result
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. \ \ Approximation strategies

* MALT: a global threshold for all samples
sMaLT(0,21) = —£(0,21) + 7

* MAST: compute a threshold for each sample

smast (0, 21) = —€(0,z1) + 7(21)

 MATT: simulate influence of sample using Taylor approximation
smarT(0,21) = —(0 — 05) Vol (0], 1)
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A\ Experiments
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A\ | Membership inference on CIFAR

Naive Bayes

=> MATT outperforms MALT
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Threshold-based

|

N Attack&accuracy
n 0—1 MALT MATT
400 52.1 54.4 57.0
1000 | 514 52.6 54.5
2000 | 50.8 51.7 53.0
4000 | 51.0 51.4 52.1
6000 | 50.7 51.0 51.8

Taylor based



2\ | Comparison with the state of the art

Method Attack accuracy
Naive Bayes (Yeom et al. [2018]) 69.4
Shadow models (Shokri et al. [2017)) 73.9
Global threshold 77.1
Sample-dependent threshold 77.6

=> State-of-the-art performance
=> Less computationally expensive
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\ Large-scale experiments on Imagenet

Model Augmentation 0-1 MALT

Resnet101 None 76.3 90.4
Flip, Crop £5 69.5 77.4
Flip, Crop 65.4 68.0

VGG16 None 77.4 90.8
Flip, Crop £5 71.3 79.5
Flip, Crop 63.8 64.3

=> Data augmentation decreases membership attacks accuracy
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) \ \ Conclusion

* Black-box attacks as good as white-box attacks

* Our approximations for membership attacks are state-of-the-art
on two datasets
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