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Motivation

Nowadays, neural networks become more and more powerful

Also, neural networks become larger and larger

LeNet 40K, AlexNet 62M, BERT 110M(base)/340M(large)

Compression of models are necessary for saving

training and inference time
storing space, e.g., for mobile Apps

Two fundamental questions about model compression

1 Is there any theoretical understanding of the fundamental limit of
model compression algorithms?

2 How can theoretical understanding help us to improve practical
compression algorithms?
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Fundamental limit for model compression

Trade-off between compression ratio and quality of compressed model

0.0

0.5

1.0

1.5

2.0

2.5

0% 5% 10% 15% 20% 25%

uncompressed
baseline
proposed

Compression Ratio

C
ro

ss
E

n
tr

op
y

Figure 1: Trade-off between compression ratio and cross entropy loss

Fundamental question: Given a pretrained model fw (x), how well
can we compress the model, given certain ratio?
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Rate distortion for model compression

We bring the tool of rate distortion theory from information theory

Rate: average number of bits to represent parameters

Distortion: difference between compressed model and original model

For regression d(w , ŵ) = EX [‖fw (X )− fŵ (X )‖2]
For classification d(w , ŵ) = EX [DKL(fŵ (X )||fw (X ))]

Rate-distortion theorem for model compression

R(D) = min
PŴ |W :E[d(W ,Ŵ )]≤D

I (W ; Ŵ )

Weihao Gao (UIUC) Model Compression June 10, 2019 4 / 13



Rate distortion for model compression

We bring the tool of rate distortion theory from information theory

Rate: average number of bits to represent parameters

Distortion: difference between compressed model and original model
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For classification d(w , ŵ) = EX [DKL(fŵ (X )||fw (X ))]

Rate-distortion theorem for model compression

R(D) = min
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Weihao Gao (UIUC) Model Compression June 10, 2019 4 / 13



Rate distortion for model compression

We bring the tool of rate distortion theory from information theory

Rate: average number of bits to represent parameters

Distortion: difference between compressed model and original model
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Our contributions

Generally, it is intractable to evaluate R(D) due to

High dimensionality of parameters
Complicated non-linearity

In this talk, our contributions are

For linear regression model, we give a lower bound of R(D) and give an
algorithm achieving the lower bound
Inspired by the optimal algorithm, we propose two “golden rules” for
model compression
We prove the optimality of proposed “golden rules” for one layer ReLU
network
We show that the algorithm following “golden rules” performs better in
real models

Weihao Gao (UIUC) Model Compression June 10, 2019 5 / 13



Our contributions

Generally, it is intractable to evaluate R(D) due to

High dimensionality of parameters
Complicated non-linearity

In this talk, our contributions are

For linear regression model, we give a lower bound of R(D) and give an
algorithm achieving the lower bound
Inspired by the optimal algorithm, we propose two “golden rules” for
model compression
We prove the optimality of proposed “golden rules” for one layer ReLU
network
We show that the algorithm following “golden rules” performs better in
real models

Weihao Gao (UIUC) Model Compression June 10, 2019 5 / 13



Our contributions

Generally, it is intractable to evaluate R(D) due to

High dimensionality of parameters
Complicated non-linearity

In this talk, our contributions are

For linear regression model, we give a lower bound of R(D) and give an
algorithm achieving the lower bound

Inspired by the optimal algorithm, we propose two “golden rules” for
model compression
We prove the optimality of proposed “golden rules” for one layer ReLU
network
We show that the algorithm following “golden rules” performs better in
real models

Weihao Gao (UIUC) Model Compression June 10, 2019 5 / 13



Our contributions

Generally, it is intractable to evaluate R(D) due to

High dimensionality of parameters
Complicated non-linearity

In this talk, our contributions are

For linear regression model, we give a lower bound of R(D) and give an
algorithm achieving the lower bound
Inspired by the optimal algorithm, we propose two “golden rules” for
model compression

We prove the optimality of proposed “golden rules” for one layer ReLU
network
We show that the algorithm following “golden rules” performs better in
real models

Weihao Gao (UIUC) Model Compression June 10, 2019 5 / 13



Our contributions

Generally, it is intractable to evaluate R(D) due to

High dimensionality of parameters
Complicated non-linearity

In this talk, our contributions are

For linear regression model, we give a lower bound of R(D) and give an
algorithm achieving the lower bound
Inspired by the optimal algorithm, we propose two “golden rules” for
model compression
We prove the optimality of proposed “golden rules” for one layer ReLU
network

We show that the algorithm following “golden rules” performs better in
real models

Weihao Gao (UIUC) Model Compression June 10, 2019 5 / 13



Our contributions

Generally, it is intractable to evaluate R(D) due to

High dimensionality of parameters
Complicated non-linearity

In this talk, our contributions are

For linear regression model, we give a lower bound of R(D) and give an
algorithm achieving the lower bound
Inspired by the optimal algorithm, we propose two “golden rules” for
model compression
We prove the optimality of proposed “golden rules” for one layer ReLU
network
We show that the algorithm following “golden rules” performs better in
real models

Weihao Gao (UIUC) Model Compression June 10, 2019 5 / 13



Linear regression

Consider linear regression model fw (x) = wT x

and the following
assumptions

Weights W are drawn from N (0,ΣW )
Data X has zero mean and E[X 2

i ] = λx,i , E[XiXj ] = 0.

Theorem: the rate distortion function is lower bounded by:

R(D) ≥ R(D) =
1

2
log det(ΣW )−

m∑
i=1

1

2
log(Di ),

where

Di =

{
µ/λx ,i ifµ < λx ,iEW [W 2

i ] ,

EW [W 2
i ] ifµ ≥ λx ,iEW [W 2

i ] ,

where µ is chosen that
∑m

i=1 λx ,iDi = D.

The lower bound is tight for linear regression.
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From theory to practice

Two “golden rules” of the optimal compressor
1 Orthogonality: EW ,Ŵ [Ŵ TΣX (W − Ŵ )] = 0

2 Minimization: EW ,Ŵ [(W − Ŵ )TΣX (W − Ŵ )] should be minimized,
given certain rate.

Modified “golden rules” for practice
1 Orthogonality: ŵT Iw (w − ŵ) = 0,
2 Minimization: (w − ŵ)T Iw (w − ŵ) is minimized given certain

constraints.

here Iw is the weight importance matrix
For regression, Iw = EX

[
∇w fw (X )(∇w fw (X ))T

]
For classification, Iw = EX

[
(∇w fw (X ))diag[f −1

w (X )](∇w fw (X ))T
]
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Optimality of “golden rules”

One-layer ReLU model fw (x) = ReLU(wT x).

Data X has zero mean and E[X 2
i ] = λx,i , E[XiXj ] = 0

For pruning and quantization algorithm, if a compressor minimizes
(w − ŵ)T Iw (w − ŵ), it automatically satisfies orthogonality:
ŵT Iw (ŵ − w) = 0.

Hence, for pruning and quantization, minimizing the objective
(w − ŵ)T Iw (w − ŵ) is equivalent to minimizing MSE loss.

For practical models, we test the objective on real data.
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Real data experiment

CIFAR10 with 5 conv layers + 3 fc layers (More experiments in full
paper)

Algorithms
Pruning: same prune ratio for all conv and fc layers
Quantization: same number of clusters for all conv and fc layers.

Recall that for classification problem,

Iw = EX

[
(∇w fw (X ))diag[f −1w (X )](∇w fw (X ))T

]
We drop the off-diagonal terms of Iw
Compare with baseline: Iw = identity.

Name Minimizing objective

Baseline
∑m

i=1(wi − ŵi )
2

Proposed
∑m

i=1 EX [
(∇wi

fw (X ))2

fw (X ) ](wi − ŵi )
2

Table 1: Comparison of unsupervised compression objectives.
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Real data experiment
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Figure 2: Result for unsupervised experiment. Left: pruning. Right: quantization.
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Real data experiment

In the previous experiments, we didn’t use the training labels

To use training label, treat the loss function Lw (x , y) = L(fw (x), y)
as a function to be compressed and define

Iw = E
[
∇wLw (X ,Y )(∇wLw (X ,Y ))T

]
By first and second order approximation of L, we propose

Name Minimizing objective

Baseline
∑m

i=1(wi − ŵi )
2

Gradient (1st approx. of L)
∑m

i=1 E[(∇wiLw (X ,Y ))2](wi − ŵi )
2

Hessian ([LeCun 90’])
∑m

i=1 E[∇2
wi
Lw (X ,Y )](wi − ŵi )

2

Gradient+Hessian
∑m

i=1 E[(∇wiLw (X ,Y ))2](wi − ŵi )
2

(2nd approx. of L) +1
4

∑m
i=1 E[(∇2

wi
Lw (X ,Y ))2](wi − ŵi )

4

Table 2: Comparison of supervised compression objectives.
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2

Gradient (1st approx. of L)
∑m

i=1 E[(∇wiLw (X ,Y ))2](wi − ŵi )
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Real data experiment
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Figure 3: Result for supervised pruning experiment. Left: pruning. Right:
quantization.
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Thanks

Thank you for your attention!
Our poster #169 tonight.

Weihao Gao (UIUC) Model Compression June 10, 2019 13 / 13


