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o Nowadays, neural networks become more and more powerful
@ Also, neural networks become larger and larger

o LeNet 40K, AlexNet 62M, BERT 110M(base)/340M(large)
@ Compression of models are necessary for saving

e training and inference time
e storing space, e.g., for mobile Apps

Two fundamental questions about model compression J

© s there any theoretical understanding of the fundamental limit of
model compression algorithms?

@ How can theoretical understanding help us to improve practical
compression algorithms?
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Fundamental limit for model compression

@ Trade-off between compression ratio and quality of compressed model
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Figure 1: Trade-off between compression ratio and cross entropy loss
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e Fundamental question: Given a pretrained model f,,(x), how well
can we compress the model, given certain ratio?
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Rate distortion for model compression

@ We bring the tool of rate distortion theory from information theory
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Rate distortion for model compression

@ We bring the tool of rate distortion theory from information theory

o Rate: average number of bits to represent parameters

o Distortion: difference between compressed model and original model
o For regression d(w, w) = Ex[||fu(X) — fa(X)|?]
e For classification d(w, w) = Ex[Dkc(fa (X)||fu (X))]

@ Rate-distortion theorem for model compression

R(D) = min I(W; W)
PW‘W:E[d(W,W)]SD
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Our contributions

o Generally, it is intractable to evaluate R(D) due to

e High dimensionality of parameters
e Complicated non-linearity
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Our contributions

o Generally, it is intractable to evaluate R(D) due to

e High dimensionality of parameters
e Complicated non-linearity
@ In this talk, our contributions are

o For linear regression model, we give a lower bound of R(D) and give an
algorithm achieving the lower bound

e Inspired by the optimal algorithm, we propose two “golden rules” for
model compression

o We prove the optimality of proposed “golden rules” for one layer ReLU
network

e We show that the algorithm following “golden rules” performs better in
real models
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Linear regression

o Consider linear regression model f,(x) = w'x
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Linear regression

T

o Consider linear regression model f,(x) = w' x and the following

assumptions
o Weights W are drawn from N(0,Xw)
o Data X has zero mean and E[X?] = A, ;, E[X;X;] = 0.
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Linear regression

T

o Consider linear regression model f,(x) = w' x and the following

assumptions

o Weights W are drawn from N(0,Xw)
o Data X has zero mean and E[X?] = A, ;, E[X;X;] = 0.

@ Theorem: the rate distortion function is lower bounded by:

m

R(D)zB(D):%Iogdet(ZW Z log(D;),
=1

where

D — WA i < A Ew WA
O\ EwlWA ifp > A Ew[WA]

where (1 is chosen that Y 7" | A ;D; = D.
@ The lower bound is tight for linear regression.
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From theory to practice

@ Two “golden rules” of the optimal compressor
© Orthogonality: EW,W[WTZX(W — W) =0
@ Minimization: E,, 3/ [(W — W)TZx(W — W)] should be minimized,
given certain rate.
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From theory to practice

@ Two “golden rules” of the optimal compressor
© Orthogonality: IEW,W[VT/TZX(W —- W) =0
@ Minimization: E,, 3/ [(W — W)TZx(W — W)] should be minimized,
given certain rate.
@ Modified “golden rules” for practice
@ Orthogonality: W'/, (w—w) =0,
@ Minimization: (w — W) T/, (w — W) is minimized given certain
constraints.
here 1, is the weight importance matrix
o For regression, I, = Ex [V fw(X)(Vufu(X))T]
o For classification, I, = Ex [(Vwfw(X))diag[f, }(X)(Vwfw(X))"]
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Optimality of “golden rules”

@ One-layer ReLU model f,(x) = ReLU(w " x).
o Data X has zero mean and E[X?] = \,;, E[X;X;] =0
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@ One-layer ReLU model f,(x) = ReLU(w " x).
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@ For pruning and quantization algorithm, if a compressor minimizes
(w — W) T I, (w — W), it automatically satisfies orthogonality:
W, (W—w)=0.

@ Hence, for pruning and quantization, minimizing the objective
(w — w)T I, (w — W) is equivalent to minimizing MSE loss.
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Optimality of “golden rules”

One-layer ReLU model £, (x) = ReLU(w T x).

o Data X has zero mean and E[X?] = \,;, E[X;X;] =0
For pruning and quantization algorithm, if a compressor minimizes
(w — W) T I, (w — W), it automatically satisfies orthogonality:
W, (W—w)=0.
Hence, for pruning and quantization, minimizing the objective
(w — W) Tl (w — W) is equivalent to minimizing MSE loss.

For practical models, we test the objective on real data.
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Real data experiment

o CIFAR10 with 5 conv layers + 3 fc layers (More experiments in full
paper)
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Real data experiment

o CIFAR10 with 5 conv layers + 3 fc layers (More experiments in full

paper)
@ Algorithms

e Pruning: same prune ratio for all conv and fc layers
e Quantization: same number of clusters for all conv and fc layers.

@ Recall that for classification problem,

by = Ex [(Vifu(X))diaglfy (O)(Vo (X)) ]

@ We drop the off-diagonal terms of /,,
o Compare with baseline: I, = identity.

Name

Minimizing objective

Baseline

an 1 (wi — vT/,)2

Proposed

Vi, fw (X ~
Z: 1EX[( I ()(<) Dk (wi — Wi)2

Table 1: Comparison of unsupervised compression objectives.
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Real data experime
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Figure 2: Result for unsupervised experiment. Left: pruning. Right: quantization.
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Real data experiment
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e To use training label, treat the loss function L, (x,y) = L(fw(x),y)
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Real data experiment

@ In the previous experiments, we didn’t use the training labels

e To use training label, treat the loss function L, (x,y) = L(fw(x),y)
as a function to be compressed and define

ly = E|(VuLu(X,Y)(Vulw(X,Y))T

@ By first and second order approximation of £, we propose

Name

Minimizing objective

Baseline

Z:'n:l(Wi - Wi)2

Gradient (1st approx. of L)

> El(Vw L (X, Y))?](w; — wi)?

Hessian ([LeCun 90'])

> E[VE Lu(X, YV)I(w; — W)

Gradient+Hessian
(2nd approx. of L)

> (Vi Lo (X, Y))1(w; — i)
+2 2001 E[(VE Lw(X, Y)))(w; — )

Table 2: Comparison of supervised compression objectives.
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Real data experiment
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Figure 3: Result for supervised pruning experiment. Left: pruning. Right:
quantization.
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Thank you for your attention!
Our poster #169 tonight.
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