Phaseless PCA: Low-Rank Matrix Recovery from Column-wise Phaseless Measurements

Seyedehsara Nayer, Praneeth Narayanamurthy, Namrata Vaswani

Iowa State University

Introduction

Phase Retrieval (PR)

• Recover a length n signal x^* from its phaseless linear projections

$$\mathbf{y}_i := |\langle \mathbf{a}_i, \mathbf{x}^* \rangle|, \quad i = 1, 2, \ldots, m$$

• Without any structural assumptions, PR necessarily needs $m \ge n$.

To reduce sample complexity, can try to exploit structure

• Most existing work studies sparse PR – assumes x^* is sparse.

Introduction

Phase Retrieval (PR)

• Recover a length n signal x^* from its phaseless linear projections

$$\mathbf{y}_i := |\langle \mathbf{a}_i, \mathbf{x}^* \rangle|, \quad i = 1, 2, \dots, m$$

• Without any structural assumptions, PR necessarily needs $m \ge n$.

To reduce sample complexity, can try to exploit structure

- Most existing work studies sparse PR assumes x^* is sparse.
- Another simple structure is low-rank. Two ways to use this:
 - \bullet assume x^* can be rearranged as a low-rank matrix (not studied); or
 - 2 assume a set of signals (or vectorized images) $\mathbf{x}_k^*, \ k=1,2,\ldots,q,$ together form a low-rank matrix

The second is a more practical and commonly used model and we use this:

▶ first studied in our earlier work [Vaswani, Nayer, Eldar, Low-Rank Phase Retrieval, T-SP'17]

Recover an $n \times q$ matrix of rank r

$$\mathbf{X}^* = [\mathbf{x}_1^*, \mathbf{x}_2^*, \dots, \mathbf{x}_k^*, \dots \mathbf{x}_q^*]$$

from a set of m phaseless linear projections of each of its q columns

$$\mathbf{y}_{ik} := |\langle \mathbf{a}_{ik}, \mathbf{x}_{k}^{*} \rangle|, i = 1, ..., m, k = 1, ..., q.$$

Application: fast phaseless dynamic imaging, e.g., Fourier ptychographic imaging of live biological specimens

Recover an $n \times q$ matrix of rank r

$$\mathbf{X}^* = [\mathbf{x}_1^*, \mathbf{x}_2^*, \dots, \mathbf{x}_k^*, \dots \mathbf{x}_q^*]$$

from a set of m phaseless linear projections of each of its q columns

$$\mathbf{y}_{ik} := |\langle \mathbf{a}_{ik}, \mathbf{x}_{k}^{*} \rangle|, i = 1, ..., m, k = 1, ..., q.$$

Application: fast phaseless dynamic imaging, e.g., Fourier ptychographic imaging of live biological specimens

- Even the linear version of this problem is different from both
 - ▶ LR matrix sensing: recover X^* from $y_i = \langle A_i, X^* \rangle$ with A_i 's dense
 - ★ global measurements $(y_i \text{ depends on entire } X^*)$
 - ► LR matrix completion: recover **X*** from a subset of its entries
 - ★ completely local measurements
 - ★ need rows & cols to be "dense" to allow for correct "interpolation"
- Our problem non-global measurements of X*, but global for each column
 - only need denseness of rows (incoherence of right singular vectors)

Recover an $n \times q$ rank-r matrix \mathbf{X}^* from $\mathbf{y}_{ik} = |\langle \mathbf{a}_{ik}, \mathbf{x}_k^* \rangle|$, $i \in [1, m]$, $k \in [1, q]$.

AltMinLowRaP algo: careful spectral init followed by alternating minimization.

Theorem (Guarantee for AltMinLowRaP)

Assume μ -incoherence of right singular vectors of \mathbf{X}^* . Set $T := C \log(1/\epsilon)$. Assume that, for each new update step, we use a new (independent) set of mq measurements with m satisfying

$$mq \geq C\kappa^6\mu^2 \ nr^4$$

and $m \ge C \max(r, \log q, \log n)$. Then, w.p. at least $1 - 10n^{-10}$,

$$dist(\hat{\boldsymbol{x}}_k^T, \boldsymbol{x}_k^*) \le \epsilon \|\boldsymbol{x}_k^*\|, \ k = 1, 2, \dots, q$$

Also, the error decays geometrically with t.

Sample complexity: $C \cdot nr^4 \log(1/\epsilon)$ (treating κ, μ as constants). Time complexity: $C \cdot mqnr \log^2(1/\epsilon)$.

Recover a rank-r $n \times q$ matrix \mathbf{X}^* from $\mathbf{y}_{ik} = |\langle \mathbf{a}_{ik}, \mathbf{x}_k^* \rangle|$, $i \in [1, m]$, $k \in [1, q]$.

 \bullet Treating κ,μ as constants, our sample complexity is

$$m_{\mathrm{tot}}q \geq C \ nr^4 \log(1/\epsilon)$$

Number of unknowns in X^* is $(q + n)r \approx 2nr$

- ▶ sample complexity is r^3 times the optimal value (nr)
- No existing guarantees for our problem or even its linear version:
 - closest LR recovery problem with non-global measurements is LR Matrix Completion (LRMC)

Recover a rank-r $n \times q$ matrix \mathbf{X}^* from $\mathbf{y}_{ik} = |\langle \mathbf{a}_{ik}, \mathbf{x}_k^* \rangle|$, $i \in [1, m]$, $k \in [1, q]$.

 \bullet Treating κ,μ as constants, our sample complexity is

$$m_{\mathrm{tot}}q \geq C \ nr^4 \log(1/\epsilon)$$

Number of unknowns in X^* is $(q + n)r \approx 2nr$

- ▶ sample complexity is r^3 times the optimal value (nr)
- No existing guarantees for our problem or even its linear version:
 - closest LR recovery problem with non-global measurements is LR Matrix Completion (LRMC)
- Sample complexity of non-convex LRMC solutions is also sub-optimal
 - ► AltMinComplete needs $C nr^{4.5} \log(1/\epsilon)$ samples
 - ▶ Best LRMC solution (proj-GD) needs $\frac{C}{n} n^2 \log^2 n$ samples
- Comparison with standard (unstructured) PR
 - ▶ Standad PR sample complexity is nq: much larger when $r^4 \ll q$

Narayanamurthy, Vaswani, Phaseless PCA, ICML 2019 (this work)]

- Alternating minimization relies on the following key idea:
 - $\textbf{1 Let } \boldsymbol{X}^* = \boldsymbol{U}^*\boldsymbol{B}^*.$ Thus $\boldsymbol{x}_k^* = \boldsymbol{U}^*\boldsymbol{b}_k^*$ and so $\boldsymbol{y}_{ik} \coloneqq |\langle \boldsymbol{a}_{ik}, \boldsymbol{x}_k^* \rangle| = |\langle \boldsymbol{U}^{*\prime}\boldsymbol{a}_{ik}, \boldsymbol{b}_k^* \rangle|$
 - **2** If U^* is known, recovering b_k^* is an (easy) r-dimensional standard PR problem
 - ★ needs only $m \ge r$ measurements.
 - **3** Given an estimate of U^* and of b_k^* , we can get an estimate of phase of $\langle a_{ik}, x_k^* \rangle$. Updating U^* is then a Least Squares problem
 - ★ can show that for this step mq of order nr^4 suffices.

Narayanamurthy, Vaswani, Phaseless PCA, ICML 2019 (this work)]

- Alternating minimization relies on the following key idea:
 - ① Let $X^* = U^*B^*$. Thus $x_k^* = U^*b_k^*$ and so $y_{ik} \coloneqq |\langle a_{ik}, x_k^* \rangle| = |\langle U^{*\prime}a_{ik}, b_k^* \rangle|$
 - ② If U^* is known, recovering b_k^* is an (easy) r-dimensional standard PR problem
 - ★ needs only $m \ge r$ measurements.
 - **3** Given an estimate of U^* and of b_k^* , we can get an estimate of phase of $\langle a_{ik}, x_k^* \rangle$. Updating U^* is then a Least Squares problem
 - \star can show that for this step mq of order nr^4 suffices.
- Spectral init: compute \hat{U}^{init} as top r eigenvectors of

$$oldsymbol{Y}_U = rac{1}{mq} \sum_{k=1}^q \sum_{i=1}^m oldsymbol{y}_{ik}^2 oldsymbol{a}_{ik} oldsymbol{a}_{ik}' oldsymbol{1}_{\left\{oldsymbol{y}_{ik}^2 \leq rac{9}{mq} \sum_{ik} oldsymbol{y}_{ik}^2
ight\}}$$

Phaseless PCA, ICML 2019 (this work)]

1:
$$\hat{r} \leftarrow \text{largest index } j \text{ for which } \lambda_j(\mathbf{Y}_U) - \lambda_n(\mathbf{Y}_U) \geq \omega$$

- 2: $\boldsymbol{U} \leftarrow \text{top } \hat{r} \text{ singular vectors of } \boldsymbol{Y}_U := \frac{1}{mq} \sum_{i,k: \boldsymbol{y}_{ik}^2 \leq \frac{9}{mq} \sum_{ik} \boldsymbol{y}_{ik}^2 \boldsymbol{y}_{ik}^2 \boldsymbol{a}_{ik} \boldsymbol{a}_{ik}'}$
- 3: **for** t = 0 : T **do**
- 4: $\hat{\boldsymbol{b}}_k \leftarrow \text{RWF}(\{\boldsymbol{y}_k, \boldsymbol{U}'\boldsymbol{a}_{ik}\}, i=1,2,\ldots,m) \text{ for each } k=1,2,\cdots,q$
- 5: $\hat{m{X}}^t \leftarrow m{U}\hat{m{B}}$ where $\hat{m{B}} = [\hat{m{b}}_1, \hat{m{b}}_2, \dots \hat{m{b}}_q]$
- 6: QR decomposition: $\hat{\boldsymbol{B}} \stackrel{\mathrm{QR}}{=} \boldsymbol{R}_B \boldsymbol{B}$
- 7: $\hat{\boldsymbol{c}}_{ik} \leftarrow phase(\langle \boldsymbol{a}_{ik}, \hat{\boldsymbol{x}}_{ik} \rangle), i = 1, 2, \dots, m, k = 1, 2, \dots, q$
- 8: $\hat{\pmb{U}} \leftarrow \arg\min_{\tilde{\pmb{U}}} \sum_{k=1}^{q} \sum_{i=1}^{m} (\hat{\pmb{c}}_{ik} \pmb{y}_{ik} \pmb{a}_{ik}' \tilde{\pmb{U}} \pmb{b}_k)^2$
- 9: QR decomp: $\hat{\boldsymbol{U}} \stackrel{\mathrm{QR}}{=} \boldsymbol{U}\boldsymbol{R}_U$
- 10: end for

Figure 1: Recovering a real video of a moving mouse (approx low-rank) from simulated m = 5n coded diffraction pattern (CDP) measurements. Showing frames 20, 60, 78.