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Introduction

Phase Retrieval (PR)

Recover a length n signal x∗ from its phaseless linear projections

yi := |〈ai , x∗〉|, i = 1, 2, . . . ,m

Without any structural assumptions, PR necessarily needs m ≥ n.

To reduce sample complexity, can try to exploit structure

Most existing work studies sparse PR – assumes x∗ is sparse.

Another simple structure is low-rank. Two ways to use this:

1 assume x∗ can be rearranged as a low-rank matrix (not studied); or
2 assume a set of signals (or vectorized images) x∗k , k = 1, 2, . . . , q,

together form a low-rank matrix

The second is a more practical and commonly used model and we use this:

I first studied in our earlier work [Vaswani, Nayer, Eldar, Low-Rank Phase Retrieval, T-SP’17]

Nayer, Narayanamurthy, Vaswani (Iowa State Univ) Phaseless PCA 2 / 8



Introduction

Phase Retrieval (PR)

Recover a length n signal x∗ from its phaseless linear projections

yi := |〈ai , x∗〉|, i = 1, 2, . . . ,m

Without any structural assumptions, PR necessarily needs m ≥ n.

To reduce sample complexity, can try to exploit structure

Most existing work studies sparse PR – assumes x∗ is sparse.

Another simple structure is low-rank. Two ways to use this:

1 assume x∗ can be rearranged as a low-rank matrix (not studied); or
2 assume a set of signals (or vectorized images) x∗k , k = 1, 2, . . . , q,

together form a low-rank matrix

The second is a more practical and commonly used model and we use this:

I first studied in our earlier work [Vaswani, Nayer, Eldar, Low-Rank Phase Retrieval, T-SP’17]

Nayer, Narayanamurthy, Vaswani (Iowa State Univ) Phaseless PCA 2 / 8



The Problem , [Nayer, Narayanamurthy, Vaswani, Phaseless PCA, ICML 2019 (this work)]

Recover an n × q matrix of rank r

X ∗ = [x∗1 , x
∗
2 , . . . , x

∗
k , . . . x

∗
q ]

from a set of m phaseless linear projections of each of its q columns

yik := |〈aik , x∗k 〉|, i = 1, . . . ,m, k = 1, . . . , q.

Application: fast phaseless dynamic imaging, e.g., Fourier ptychographic imaging
of live biological specimens

Even the linear version of this problem is different from both

I LR matrix sensing: recover X ∗ from yi = 〈Ai ,X ∗〉 with Ai ’s dense
F global measurements (yi depends on entire X ∗)

I LR matrix completion: recover X ∗ from a subset of its entries
F completely local measurements
F need rows & cols to be “dense” to allow for correct “interpolation”

Our problem - non-global measurements of X ∗, but global for each column

I only need denseness of rows (incoherence of right singular vectors)
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Main Result for AltMinLowRaP[Nayer, Narayanamurthy, Vaswani, Phaseless PCA, ICML 2019 (this work)]

Recover an n × q rank-r matrix X ∗ from yik = |〈aik , x∗k 〉|, i ∈ [1,m], k ∈ [1, q].

AltMinLowRaP algo: careful spectral init followed by alternating minimization.

Theorem (Guarantee for AltMinLowRaP)

Assume µ-incoherence of right singular vectors of X ∗. Set T := C log(1/ε).
Assume that, for each new update step, we use a new (independent) set of mq
measurements with m satisfying

mq ≥ Cκ6µ2 nr4

and m ≥ C max(r , log q, log n). Then, w.p. at least 1− 10n−10,

dist(x̂T
k , x

∗
k ) ≤ ε‖x∗k ‖, k = 1, 2, . . . , q

Also, the error decays geometrically with t.

Sample complexity: C · nr4 log(1/ε) (treating κ, µ as constants).
Time complexity: C ·mqnr log2(1/ε).
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Discussion [Nayer, Narayanamurthy, Vaswani, Phaseless PCA, ICML 2019 (this work)]

Recover a rank-r n × q matrix X ∗ from yik = |〈aik , x∗k 〉|, i ∈ [1,m], k ∈ [1, q].

Treating κ, µ as constants, our sample complexity is

mtotq ≥ C nr4 log(1/ε)

Number of unknowns in X ∗ is (q + n)r ≈ 2nr

I sample complexity is r3 times the optimal value (nr)

No existing guarantees for our problem or even its linear version:

I closest LR recovery problem with non-global measurements is LR
Matrix Completion (LRMC)

Sample complexity of non-convex LRMC solutions is also sub-optimal

I AltMinComplete needs C nr4.5 log(1/ε) samples
I Best LRMC solution (proj-GD) needs C nr2 log2 n samples

Comparison with standard (unstructured) PR

I Standad PR sample complexity is nq: much larger when r4 � q
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Key idea of the algorithm: Alt-Min for Phaseless Low Rank Recovery [Nayer,

Narayanamurthy, Vaswani, Phaseless PCA, ICML 2019 (this work)]

Alternating minimization relies on the following key idea:

1 Let X ∗ = U∗B∗.
Thus x∗k = U∗b∗k and so yik := |〈aik , x∗k 〉| = |〈U∗′aik ,b∗k 〉|

2 If U∗ is known, recovering b∗k is an (easy) r -dimensional standard PR
problem

F needs only m ≥ r measurements.

3 Given an estimate of U∗ and of b∗k , we can get an estimate of phase of
〈aik , x∗k 〉. Updating U∗ is then a Least Squares problem

F can show that for this step mq of order nr 4 suffices.

Spectral init: compute Û init as top r eigenvectors of

YU =
1

mq

q∑
k=1

m∑
i=1

y2
ikaikaik

′1{
y2
ik≤

9
mq

∑
ik y2

ik

}
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AltMin-LowRaP: Alt-Min for Phaseless Low Rank Recovery [Nayer, Narayanamurthy, Vaswani,

Phaseless PCA, ICML 2019 (this work)]

1: r̂ ← largest index j for which λj(YU)− λn(YU) ≥ ω

2: U ← top r̂ singular vectors of YU := 1
mq

∑
i,k:y2

ik≤
9
mq

∑
ik y2

ik
y 2
ikaikaik

′

3: for t = 0 : T do
4: b̂k ← RWF({yk ,U ′aik}, i = 1, 2, . . . ,m) for each k = 1, 2, · · · , q

5: X̂ t ← UB̂ where B̂ = [b̂1, b̂2, . . . b̂q]

6: QR decomposition: B̂ QR
= RBB

7: ĉik ← phase(〈aik , x̂ik〉), i = 1, 2, . . . ,m, k = 1, 2, · · · , q

8: Û ← arg minŨ
∑q

k=1

∑m
i=1(ĉikyik − aik ′Ũbk)2

9: QR decomp: Û QR
= URU

10: end for

RWF: one of two (provably) best standard PR methods
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Selected Real Video Results – I

(a) Original (b) AltMinLowRaP (c) RWF

Figure 1: Recovering a real video of a moving mouse (approx low-rank) from
simulated m = 5n coded diffraction pattern (CDP) measurements. Showing
frames 20, 60, 78.
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