Seyedehsara Nayer, Praneeth Narayanamurthy, Namrata Vaswani

lowa State University

o>



Phase Retrieval (PR)

@ Recover a length n signal x* from its phaseless linear projections

yi = [(ai, x")], i

1,2,....,m
@ Without any structural assumptions, PR necessarily needs m > n.
To reduce sample complexity, can try to exploit structure

@ Most existing work studies sparse PR — assumes x* is sparse.
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Introduction

Phase Retrieval (PR)

@ Recover a length n signal x* from its phaseless linear projections
Yi ‘= ‘<al’7x>k>|v I= 1721'~'7m

@ Without any structural assumptions, PR necessarily needs m > n.

To reduce sample complexity, can try to exploit structure

@ Most existing work studies sparse PR — assumes x* is sparse.
@ Another simple structure is low-rank. Two ways to use this:

@ assume x* can be rearranged as a low-rank matrix (not studied); or
@ assume a set of signals (or vectorized images) x;, k=1,2,...,q,
together form a low-rank matrix

The second is a more practical and commonly used model and we use this:

» first studied in our earlier work [Vaswani, Nayer, Eldar, Low-Rank Phase Retrieval, T-SP'17]
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Recover an n x g matrix of rank r
* * *
X*=[x{,x5,.

* *
.y xk PR
from a set of m phaseless linear projections of each of its g columns

-xg]

Yik ::|<aikaxlt>|a i:]-y"'am? k:]-’ »d
of live biological specimens

Application: fast phaseless dynamic imaging, e.g., Fourier ptychographic imaging

«O> «F>r «=» «E» Q>



The Problem , [Nayer, Narayanamurthy, Vaswani, Phaseless PCA, ICML 2019 (this work)]

Recover an n x g matrix of rank r

* * * * *
X" =[x{, %5,y X5 Xg]

from a set of m phaseless linear projections of each of its g columns

Yik ‘= |<a,-k,x,’j>|7 i = 1,...,m, k= 17...,q.
Application: fast phaseless dynamic imaging, e.g., Fourier ptychographic imaging
of live biological specimens

@ Even the linear version of this problem is different from both

» LR matrix sensing: recover X* from y; = (A;, X*) with A;'s dense
* global measurements (y; depends on entire X*)
» LR matrix completion: recover X* from a subset of its entries

* completely local measurements
* need rows & cols to be “dense” to allow for correct “interpolation”

@ Our problem - non-global measurements of X*, but global for each column

» only need denseness of rows (incoherence of right singular vectors)
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Main ReSUlt fOI’ AltMlnLowRa P[Nayer, Narayanamurthy, Vaswani, Phaseless PCA, ICML 2019 (this work)]

Recover an n x q rank-r matrix X* from yi = [(ai, x{)|, i € [1,m], k € [1,q].
AltMinLowRaP algo: careful spectral init followed by alternating minimization.

Theorem (Guarantee for AltMinLowRaP)

Assume p-incoherence of right singular vectors of X*. Set T := Clog(1/e).
Assume that, for each new update step, we use a new (independent) set of mq
measurements with m satisfying

mq > Ck®u? nr'
and m > C max(r, log q,log n). Then, w.p. at least 1 — 10n~1°,
dist(&], x7) < ellx{l, k=1,2,....q

Also, the error decays geometrically with t.

Sample complexity: C - nr*log(1/¢) (treating r, uu as constants).
Time complexity: C - mgnrlog®(1/e).
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Recover a rank-r n x q matrix X* from yy = [(ai, x)|, i € [1,m], k € [1, q].
@ Treating k, 1 as constants, our sample complexity is

Miorq > C nrlog(1/€)
Number of unknowns in X* is (g + n)r ~ 2nr

» sample complexity is r® times the optimal value (nr)

» closest LR recovery problem with non-global measurements is LR
Matrix Completion (LRMC)
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@ No existing guarantees for our problem or even its linear version:



DiSCUSSiOﬂ [Nayer, Narayanamurthy, Vaswani, Phaseless PCA, ICML 2019 (this work)]

Recover a rank-r n x q matrix X* from yy = [(ai, x)|, i € [1,m], k € [1, q].

@ Treating , 1 as constants, our sample complexity is
Miorq > C nrt log(1/€)

Number of unknowns in X* is (g + n)r = 2nr

» sample complexity is r3 times the optimal value (nr)

@ No existing guarantees for our problem or even its linear version:

» closest LR recovery problem with non-global measurements is LR
Matrix Completion (LRMC)

@ Sample complexity of non-convex LRMC solutions is also sub-optimal

» AltMinComplete needs C nr*°log(1/¢) samples
» Best LRMC solution (proj-GD) needs C nr?log? n samples

@ Comparison with standard (unstructured) PR

» Standad PR sample complexity is ng: much larger when r* < g
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Key idea of the algorithm: Alt-Min for Phaseless Low Rank Recovery [Nayer,

Narayanamurthy, Vaswani, Phaseless PCA, ICML 2019 (this work)]

@ Alternating minimization relies on the following key idea:
O Let X* = U*B*.
Thus x; = U*bj and so yi = |(ai, x;')| = |(U* ai, b})|
@ If U* is known, recovering b is an (easy) r-dimensional standard PR
problem
* needs only m > r measurements.

© Given an estimate of U* and of b}, we can get an estimate of phase of
(aik, x). Updating U* is then a Least Squares problem

* can show that for this step mq of order nr* suffices.
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Key idea of the algorithm: Alt-Min for Phaseless Low Rank Recovery [Nayer,

Narayanamurthy, Vaswani, Phaseless PCA, ICML 2019 (this work)]

@ Alternating minimization relies on the following key idea:

Q Let X* = U*B*.
Thus x; = U*bj and so yi = |(ai, x;')| = |(U* ai, b})|

@ If U* is known, recovering b is an (easy) r-dimensional standard PR
problem

* needs only m > r measurements.

© Given an estimate of U* and of b}, we can get an estimate of phase of
(aik, x). Updating U* is then a Least Squares problem

* can show that for this step mq of order nr* suffices.

e Spectral init: compute U™ as top r eigenvectors of

kalkalk
k_ — { lk—mq Zikyli}
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AItMin-LOWRaP: Alt-MIn fOI' PhaseleSS LOW Rank ReCOVeI’y [Nayer, Narayanamurthy, Vaswani,

Phaseless PCA, ICML 2019 (this work)]

1: 7 < largest index j for which \j(Yy) — An(Yu) > w

2: U « top F singular vectors of Yy := miq i ki< S T )2 y2agai’
rkfmq ik Yik

3: fort =0:T do

4 by« RWF({yx, U'ai},i=1,2,...,m) foreach k=1,2,--- | q
s X UBwhere 6= bbb

6: QR decomposition: BE RBB

7 Ci < phase({ay, X)), i=1,2,....m, k=12 --- . q

8: 0 < arg minU ZZ:I Z;ll(éikyik — a,-k’Ubk)2

9: QR decomp: U URU
10: end for

RWF: one of two (provably) best standard PR methods
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Selected Real Video Results — |

(a) Original (b) AltMinLowRaP (c) RWF
Figure 1: Recovering a real video of a moving mouse (approx low-rank) from

simulated m = 5n coded diffraction pattern (CDP) measurements. Showing
frames 20, 60, 78.
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