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Motivation

Reliable, robust, and efficient information 
transmission is key for everyday communication



Problem Statement
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Compression
(Source coding) Decompression

Reliable communication across 
noisy channel   

0 1 0 1

Channel coding Channel decoding

Separation Theorem [Shannon 1948]
Assumes infinite blocklength & compute  

channel model



Neural Joint Source-Channel Coding
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channel code



NECST Model
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encoder decoder

Maximize 
mutual information

[MacKay 2003] 

channel model



Coding Process
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Learning Objective

• Mutual information maximization
• Y should capture as much information about X as 

possible, even after corruption!
• Estimation is hard ☹ [Barber & Agakov 2004]

• Variational lower bound is nicer:

Reconstruction loss!
[Kingma & Welling 2014]

[Vincent 2008]



Optimization Procedure

• Our latent variables y are discrete ☹
• Use VIMCO: [Mnih and Rezende 2016]

• Draw multiple (K) samples from inference 
network, get tighter lower bound

Multiple reconstruction loss terms
      Multiple samples of y



Fixed Rate: Comparison vs. Ideal Codes

We need a much smaller number of bits to get the same level of 
distortion, even vs. WebP [Google 2010] + ideal channel code 



Extremely Fast Decoding

Up to 2x orders of magnitude in speedup on GPU vs. LDPC decoder [Gallager 1963] 



Learning the Data Distribution

0 1 1 0 0 1

Theorem (informal): NECST learns an implicit model of                  

1 0 1



Robust Representation Learning

1 1 1 0 1 1
1) Encoded redundancies: 
interpolation in latent space by bit-flip

2) Improved downstream classification: improves accuracy by as much 
as 29% across variety of classifiers when inputs are corrupted by noise!

1 bit flip0 bit flips

45/100 bits



Summary

• End-to-end deep generative modeling framework 
for the JSCC problem

• Better bitlength efficiency than separation scheme 
on CIFAR10, CelebA, SVHN

• Another way to learn robust latent representations
• Get an extremely fast decoder for free



Thanks!

Contact: kechoi@stanford.edu
Code: https://github.com/ermongroup/necst
Poster #165: Tuesday, June 11th @ Pacific Ballroom
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