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Quick Summary

• Learn a density function incrementally

• Use classifiers for the incremental updates (similar to GAN
discriminators)

• Unlike other state of the art attempts, achieve strong convergence
results (geometric) using a weak learning assumption on the
classifiers (in the paper!)
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sup
D:X→(0,1)

EQ0
[logD]− EP [log(1−D)]
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Take f(t) def
= t log t− (t+ 1) log(t+ 1) and ϕ(D)

def
= D

1−D . Then

sup
D:X→(0,1)

EQ0
[logD]− EP [log(1−D)]

= sup
D:X→(0,1)

EQ0 [f
′ ◦ ϕ ◦D]− EP [f

∗ ◦ f ′ ◦ ϕ ◦D]

= sup
d:X→(0,∞)

EQ0
[f ′ ◦ d]− EP [f

∗ ◦ f ′ ◦ d]

= EQ0

[
f ′ ◦ dP

dQ0

]
− EP

[
f∗ ◦ f ′ ◦ dP

dQ0

]

Recall:

∀f :

∫
f(x)P (dx) =

∫
f(x)

dP

dQ0
(x)Q0(dx)
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Main Idea

d1 ∈ argmax
d′:X→(0,∞)

EQ0
[f ′ ◦ d′]− EP [f

∗ ◦ f ′ ◦ d′]

1. Find d1 as above

2. Multiply d1(x)Q0(dx) to find P (dx)

3. Finished. Get a job at a hedge fund next door

Unfortunately this is not so simple since in practice we can only
approximately solve the maximisation. Sadface.
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Solution

dt ∈ argmax
d′:X→(0,∞)

EQt−1
[f ′ ◦ d′]− EP [f

∗ ◦ f ′ ◦ d′]

Q̃t(dx) = dαt
t (x) · Q̃t−1(dx), Qt =

1

Zt
Q̃t, where Zt

def
=

∫
dQ̃t,

1. Some step size parameters αt ∈ (0, 1)

2. Treat the updates as classifiers dt = exp ◦ct

• The classifiers are distinguishing between samples originating from
P and Qt−1 like in a GAN

• However unlike a GAN there is not necessarily a simple fast sampler
for Qt−1, but there is a closed-form density function

Convergence of Qt → P in KL-divergence with a weak learning
assumption on the updates as classifiers. With additional minimal

assumptions: geometric convergence.
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Experiments
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Thanks for listening, come chat to us at poster #161. (Bring beer!)
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