Generalized Approximate Survey Propagation for High-dimensional Estimation

Research

Luca Saglietti

Yue Lu, Harvard University

Carlo Lucibello, Bocconi University

Outline

- Generalized Linear Models (GLM)
 - Real-valued phase retrieval
 - Inference model
- Approximate message-passing
 - Effective landscapes and competition
 - Breaking the replica symmetry
 - Changing the effective landscape
- Conclusions

High-dimensional limit:
$$N o\infty$$

with
$$lpha=M/N$$
 of $\mathcal{O}(1)$

$$\mathbb{R}^{N} \qquad \qquad \text{TRUE SIGNAL}: \qquad x_{0,i} \sim P_{X_0}$$

$$\mathbb{R}^{M \times N} \qquad \qquad \text{OBSERVATION} : \qquad F_i^{\mu} \sim \mathcal{N}(0,1/N)$$

$$\mathbb{R}^{M} \qquad \qquad \text{OBSERVED} : \qquad y^{\mu} \sim P_{out}(\cdot|F^{\mu} \cdot x_0)$$

High-dimensional limit:
$$N o\infty$$

with
$$lpha=M/N$$
 of $\mathcal{O}(1)$

$$\mathbb{R}^{N} \qquad \qquad \text{True signal} : \qquad x_{0,i} \sim P_{X_0}$$

$$\mathbb{R}^{M \times N} \qquad \qquad \text{Observation} : \qquad F_i^{\mu} \sim \mathcal{N}(0,1/N)$$

$$\mathbb{R}^{M} \qquad \qquad \text{Observed} : \qquad y^{\mu} \sim P_{out}(\cdot|F^{\mu} \cdot x_0)$$
 Signal :
$$y^{\mu} \sim P_{out}(\cdot|F^{\mu} \cdot x_0)$$

High-dimensional limit:
$$N o \infty$$

with
$$lpha=M/N$$
 of $\mathcal{O}(1)$

$$\mathbb{R}^{N} \qquad \qquad \text{True signal} \ : \qquad x_{0,i} \sim P_{X_0}$$

$$\mathbb{R}^{M \times N} \qquad \qquad \text{Observation} \ : \qquad F_i^{\mu} \sim \mathcal{N}(0,1/N)$$

$$\mathbb{R}^{M} \qquad \qquad \text{Observed} \ : \qquad y^{\mu} \sim P_{out}(\cdot|F^{\mu} \cdot x_0)$$
 Signal :

High-dimensional limit:
$$N o \infty$$

with
$$lpha=M/N$$
 of $\mathcal{O}(1)$

$$P_{X_0} = \mathcal{N}(0,1)$$
 $y^{\mu} = |F^{\mu} \cdot x_0|$ (+ noise)

- Physically meaningful
- \mathbb{Z}_2 symmetry in the signal space.
- $\alpha=1$ should provide enough information for a perfect reconstruction.
- Gradient descent struggles to reconstruct the signal until $\,lpha\sim 10.$
- Rigorous result about convexification in a $\alpha \sim \log N$ regime.

$$P_{X_0} = \mathcal{N}(0,1)$$
 $y^{\mu} = |F^{\mu} \cdot x_0|$ (+ noise)

- Physically meaningful!
- \mathbb{Z}_2 symmetry in the signal space
- $\alpha=1$ should provide enough information for a perfect reconstruction.
- Gradient descent struggles to reconstruct the signal until $\, \alpha \sim 10 \,$
- Rigorous result about convexification in a $\, lpha \sim \log N \,$ regime.

$$P_{X_0} = \mathcal{N}(0,1)$$
 $y^{\mu} = |F^{\mu} \cdot x_0|$ (+ noise)

- Physically meaningful!
- \mathbb{Z}_2 symmetry in the signal space.
- $\alpha=1$ should provide enough information for a perfect reconstruction.
- Gradient descent struggles to reconstruct the signal until $\, lpha \sim 10 . \,$
- Rigorous result about convexification in a $\alpha \sim \log N$ regime.

$$P_{X_0} = \mathcal{N}(0,1)$$
 $y^{\mu} = |F^{\mu} \cdot x_0|$ (+ noise)

- Physically meaningful!
- \mathbb{Z}_2 symmetry in the signal space.
- $\alpha = 1$ should provide enough information for a perfect reconstruction.
- Gradient descent struggles to reconstruct the signal until $\, lpha \sim 10. \,$
- Rigorous result about convexification in a $\alpha \sim \log N$ regime.

$$P_{X_0} = \mathcal{N}(0,1)$$
 $y^{\mu} = |F^{\mu} \cdot x_0|$ (+ noise)

- Physically meaningful!
- \mathbb{Z}_2 symmetry in the signal space.
- $\alpha = 1$ should provide enough information for a perfect reconstruction.
- Gradient descent struggles to reconstruct the signal until $\, \alpha \sim 10. \,$
- Rigorous result about convexification in a $\alpha \sim \log N$ regime.

$$P_{X_0} = \mathcal{N}(0,1)$$
 $y^{\mu} = |F^{\mu} \cdot x_0|$ (+ noise)

- Physically meaningful!
- \mathbb{Z}_2 symmetry in the signal space.
- $\alpha = 1$ should provide enough information for a perfect reconstruction.
- Gradient descent struggles to reconstruct the signal until $\, \alpha \sim 10 . \,$
- Rigorous result about convexification in a $\, lpha \sim \log N \,$ regime.

Inference Model

$$p(x) \sim e^{-\beta \mathcal{H}_{y,F}(x)}$$

$$\mathcal{H}_{y,F}(x) = \sum_{\mu=1}^{M} \ell(y^{\mu}, F^{\mu} \cdot x) + \sum_{i=1}^{N} r(x_i)$$

→ Sensible choice

$$\ell(y, z) = -\log P_{out}(y|z)$$
$$r(x) = -\log P_{X_0}(x)$$

GRAPHICAL MODEL

MATCHED / MISMATCHED

Estimator
$$\hat{x}$$
 :

Bayesian optimal:

Maximum a posteriori:

$$\hat{x}_{BO} = \langle x \rangle_{\beta=1}$$

$$\hat{x}_{MAP} = \langle x \rangle_{\beta = \infty}$$

Inference Model

$$p(x) \sim e^{-\beta \mathcal{H}_{y,F}(x)}$$

$$\mathcal{H}_{y,F}(x) = \sum_{\mu=1}^{M} \ell(y^{\mu}, F^{\mu} \cdot x) + \sum_{i=1}^{N} r(x_i)$$
 Sensible choice:
$$\ell(y, z) = -\log P_{out}(y|z)$$

$$r(x) = -\log P_{X_0}(x)$$

$$\ell(y, z) = -\log P_{out}(y|z)$$

$$r(x) = -\log P_{X_0}(x)$$

GRAPHICAL MODEL

MATCHED / MISMATCHED

$$\hat{x}_{BO} = \langle x \rangle_{\beta=1}$$

$$\hat{x}_{MAP} = \langle x \rangle_{\beta = \infty}$$

Inference Model

$$p(x) \sim e^{-\beta \mathcal{H}_{y,F}(x)}$$

$$\mathcal{H}_{y,F}(x) = \sum_{\mu=1}^{M} \ell(y^{\mu}, F^{\mu} \cdot x) + \sum_{i=1}^{N} r(x_i)$$
 Sensible choice:
$$\ell(y, z) = -\log P_{out}(y|z)$$

$$r(x) = -\log P_{X_0}(x)$$

$$\ell(y, z) = -\log P_{out}(y|z)$$

$$r(x) = -\log P_{X_0}(x)$$

GRAPHICAL MODEL

MATCHED / MISMATCHED

Bayesian optimal:

$$\hat{x}_{BO} = \langle x \rangle_{\beta=1}$$

$$\hat{x}_{MAP} = \langle x \rangle_{\beta = \infty}$$

How do we obtain \hat{x}_{MAP} ?

Easy (if everything is i.i.d.)

How do we obtain \hat{x}_{MAP} ?

Easy (if everything is i.i.d.)

How do we obtain \hat{x}_{MAP} ?

Easy (if everything is i.i.d.)

DEFINE 2 SCALAR INFERENCE CHANNELS:

How do we obtain \hat{x}_{MAP} ?

Easy (if everything is i.i.d.)

$$p(x) \longrightarrow \begin{array}{c} \text{Gaussian} & \text{Single-site} \\ \text{ansatz} & \text{quantities} \\ \text{BP} & \text{rBP} & \text{AMP (TAP)} \end{array}$$

DEFINE 2 SCALAR
INFERENCE CHANNELS:

How do we obtain \hat{x}_{MAP} ?

Easy (if everything is i.i.d.)

$$p(x) \longrightarrow \begin{array}{c} \text{Gaussian} & \text{Single-site} \\ \text{ansatz} & \text{quantities} \\ \text{BP} & \text{rBP} & \text{AMP (TAP)} \end{array}$$

How do we obtain \hat{x}_{MAP} ? Easy (if everything is i.i.d.)

$$p(x) \longrightarrow \begin{array}{c} \text{Gaussian} & \text{Single-site} \\ \text{ansatz} & \text{quantities} \\ \text{BP} & \text{rBP} & \text{AMP (TAP)} \end{array}$$

(possible scenario)

1: $\alpha \ll 1$

overlap:
$$\rho = \frac{x_0 \cdot x}{N}$$

GD in this effective landscape

Stationary points ←→ Fixed points

lpha (SNR)

(possible scenario)

overlap:
$$\rho = \frac{x_0 \cdot \dot{x}}{N}$$

GD in this effective landscape

Stationary points ←→ Fixed points

(possible scenario)

overlap:
$$\rho = \frac{x_0 \cdot \hat{x}}{N}$$

GD in this effective landscape

Stationary points ←→ Fixed points

(possible scenario)

overlap:
$$\rho = \frac{x_0 \cdot \hat{x}}{N}$$

GD in this effective landscape

Stationary points ←→ Fixed points

Breaking the symmetry

GAMP

VS

GASP(s)

Replica symmetry assumption

 $\hat{x} \\ \Delta$

Input scalar channel:

$$\Phi_{in}^{RS}(B,A) = \log \int_{\mathcal{X}} dx \ e^{-\frac{1}{2}Ax^2 + Bx - \beta r(x)}$$

1RSB assumption

 $\frac{x}{\Delta_0}$

Input scalar channel

$$\Phi_{in}^{1RSB}(B, A_0, A_1; s) = \frac{1}{s} \log \int \mathcal{D}z \ e^{s \Phi_{in}^{RS}(B + \sqrt{A_0}z, A_1)}$$

SYMMETRY BREAKING PARAMETER

- Same computational complexity
- (Potentially) more expensive element-wise operation:
- How to set the symmetry breaking parameter s?

Breaking the symmetry

GAMP

VS

GASP(s)

Replica symmetry assumption

 $\hat{x} \\ \Delta$

1RSB assumption

Input scalar channel:

$$\Phi_{in}^{RS}(B,A) = \log \int_{\mathcal{X}} dx \ e^{-\frac{1}{2}Ax^2 + Bx - \beta r(x)}$$

Input scalar channel:

$$\Phi_{in}^{1RSB}(B, A_0, A_1; s) = \frac{1}{s} \log \int \mathcal{D}z \, e^{s \, \Phi_{in}^{RS}(B + \sqrt{A_0}z, A_1)}$$

SYMMETRY BREAKING PARAMETER

- Same computational complexity
- (Potentially) more expensive element-wise operations
- How to set the symmetry breaking parameter \$?

Breaking the symmetry

GAMP

VS

GASP(s)

Replica symmetry assumption

1RSB assumption

Input scalar channel:

$$\Phi_{in}^{RS}(B,A) = \log \int_{\mathcal{X}} dx \ e^{-\frac{1}{2}Ax^2 + Bx - \beta r(x)}$$

Input scalar channel:

$$\Phi_{in}^{1RSB}(B, A_0, A_1; s) = \frac{1}{s} \log \int \mathcal{D}z \, e^{s \, \Phi_{in}^{RS}(B + \sqrt{A_0}z, A_1)}$$

SYMMETRY BREAKING PARAMETER

- Same computational complexity
- (Potentially) more expensive element-wise operations
- How to set the symmetry breaking parameter §?

Message-passing equations

GAMP

$$\omega_{\mu}^{t} = \sum_{i} F_{i}^{\mu} \hat{x}_{i}^{t-1} - g_{\mu}^{t-1} V^{t-1}$$

$$g_{\mu}^{t} = \partial_{\omega} \varphi_{\mu}^{\text{out},t}$$

$$\Gamma_{\mu}^{t} = -\partial_{\omega}^{2} \varphi_{\mu}^{\text{out},t}$$

$$A^{t} = c_{F} \sum_{\mu} \Gamma_{\mu}^{t}$$

$$B_{i}^{t} = \sum_{\mu} F_{i}^{\mu} g_{\mu}^{t} + \hat{x}_{i}^{t-1} A^{t}$$

$$\hat{x}_{i}^{t} = \partial_{B} \varphi_{i}^{\text{in},t}$$

$$\Delta_{i}^{t} = \partial_{B} \varphi_{i}^{\text{in},t}$$

$$V^{t} = c_{F} \sum_{i} \Delta_{i}^{t}$$

GASP(s)

$$\begin{split} \omega_{\mu}^{t} &= \sum_{i} F_{i}^{\mu} \hat{x}_{i}^{t-1} - g_{\mu}^{t-1} (V_{1}^{t-1} + sV_{0}^{t-1}) \\ g_{\mu}^{t} &= \partial_{\omega} \phi_{\mu}^{\text{out},t} \\ \Gamma_{0}^{t} &= \frac{1}{s-1} \left(\partial_{\omega}^{2} \phi_{\mu}^{\text{out},t} - 2 \partial_{V_{1}} \phi_{\mu}^{\text{out},t} + (g_{\mu}^{t})^{2} \right) \\ \Gamma_{1}^{t} &= -\partial_{\omega}^{2} \phi_{\mu}^{\text{out},t} + s\Gamma_{0}^{t} \\ A_{0}^{t} &= c_{F} \sum_{\mu} \Gamma_{0}^{t} \\ A_{1}^{t} &= c_{F} \sum_{\mu} \Gamma_{1}^{t} \\ B_{i}^{t} &= \sum_{\mu} F_{i}^{\mu} g_{\mu}^{t} + \hat{x}_{i}^{t-1} (A_{1}^{t} - sA_{0}^{t}) \\ \hat{x}_{i}^{t} &= \partial_{B} \phi_{i}^{\text{in},t} \\ \Delta_{0,i}^{t} &= \frac{1}{s-1} \left(\partial_{B}^{2} \phi_{i}^{\text{in},t} + 2 \partial_{A_{1}} \phi_{i}^{\text{in},t} + (\hat{x}_{i}^{t})^{2} \right) \\ \Delta_{1,i}^{t} &= \partial_{B}^{2} \phi_{i}^{\text{in},t} - s\Delta_{0,i}^{t} \\ V_{0}^{t} &= c_{F} \sum_{i} \Delta_{0,i}^{t} \\ V_{1}^{t} &= c_{F} \sum_{i} \Delta_{1,i}^{t}. \end{split}$$

Changing the Effective Landscape

Phase retrieval, noiseless case No regularizer

 $oldsymbol{S}$: explore minima at different energy levels

$$S^{\star} \rightarrow \text{GROUND STATE}$$

RS: Hard below $\alpha_{alg} \sim 2.5$

1RSB: Hard below $\alpha_{alg} \sim 1.5$

Changing the Effective Landscape

Phase retrieval, noiseless case No regularizer

 ${\cal S}\;$: explore minima at different energy/complexity levels

$$s^{\star}$$
 GROUND STATE

RS: Hard below $\alpha_{alg} \sim 2.5$

Changing the Effective Landscape

Phase retrieval, noiseless case No regularizer

 ${\cal S}\;$: explore minima at different energy/complexity levels

$$S^{\star} \rightarrow \text{GROUND STATE}$$

RS : Hard below $\alpha_{alg} \sim 2.5$

1RSB: Hard below $lpha_{alg} \sim 1.5$

Conclusions

- In mismatched inference settings the RS assumption can be wrong.
- GASP can improve over GAMP. Same O(N^2) complexity.
- Simple continuation strategy can push GASP down to the BO algorithmic threshold.
- For more details please check my poster this evening!

THANK YOU FOR YOUR ATTENTION!