
Generalized Approximate Survey Propagation 
for High-dimensional Estimation

Luca Saglietti

Yue Lu, Harvard University Carlo Lucibello, Bocconi University



Outline

• Generalized Linear Models (GLM)
• Real-valued phase retrieval

• Inference model

• Approximate message-passing
• Effective landscapes and competition
• Breaking the replica symmetry

• Changing the effective landscape

• Conclusions



Generalized Linear Models

3 ingredients :

TRUE SIGNAL

OBSERVATION 
MATRIX

OBSERVED 
SIGNAL

High-dimensional limit:

with of

:

:

:



Generalized Linear Models

3 ingredients :

TRUE SIGNAL

OBSERVATION 
MATRIX

OBSERVED 
SIGNAL

High-dimensional limit:

with of

:

:

:



Generalized Linear Models

3 ingredients :

TRUE SIGNAL

OBSERVATION 
MATRIX

OBSERVED 
SIGNAL

High-dimensional limit:

with of

:

:

:



Generalized Linear Models

3 ingredients :

TRUE SIGNAL

OBSERVATION 
MATRIX

OBSERVED 
SIGNAL

High-dimensional limit:

with of

:

:

:



An example: Real-valued Phase Retrieval

Fun facts about phase retrieval:

• Physically meaningful!

• symmetry in the signal space.

• should provide enough information for a perfect reconstruction.

• Gradient descent struggles to reconstruct the signal until                .

• Rigorous result about convexification in a                       regime.
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Inference Model

Sensible choice:
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Bayesian optimal:

Maximum a posteriori:



Inference Model

Sensible choice:

GRAPHICAL MODEL

MATCHED /  MISMATCHED

Estimator          :
Bayesian optimal:

Maximum a posteriori:



Inference Model

Sensible choice:

GRAPHICAL MODEL

MATCHED /  MISMATCHED

Estimator          :
Bayesian optimal:

Maximum a posteriori:



Approximate Message-passing

How do we obtain               ?              Easy (if everything is i.i.d.)
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Breaking the symmetry

GAMP GASP(s)vs

Replica symmetry 
assumption

1RSB
assumption

Input scalar channel: Input scalar channel:

• Same computational complexity
• (Potentially) more expensive element-wise operations

• How to set the symmetry breaking parameter s ? 

SYMMETRY BREAKING PARAMETER
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Message-passing equations
GAMP GASP(s)
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Conclusions

• In mismatched inference settings the RS assumption can be wrong.

• GASP can improve over GAMP. Same O(N^2) complexity.

• Simple continuation strategy can push GASP  down to the BO algorithmic threshold.

• For more details please check my poster this evening!

THANK YOU FOR YOUR ATTENTION!


