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3 ingredients :

RN < TRUESIGNAL : xo,i ~ Px,
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High-dimensional limit: N — o0

with o« = M/N of O(1)



An example: Real-valued Phase Retrieval

Px, = N(0,1) y* = |F* - x| (+noise)



An example: Real-valued Phase Retrieval
Px, = N(0,1) y* = |F* - xg| (+noise)

Fun facts about phase retrieval:

* Physically meaningful!



An example: Real-valued Phase Retrieval
Px, = N(0,1) y* = |F* - xg| (+noise)

Fun facts about phase retrieval:

* Physically meaningful!

» 7o symmetry in the signal space.



An example: Real-valued Phase Retrieval
Px, = N(0,1) y* = |F* - xg| (+noise)

Fun facts about phase retrieval:

* Physically meaningful!
« 7o symmetry in the signal space.

« « = 1 should provide enough information for a perfect reconstruction.



An example: Real-valued Phase Retrieval
Px, = N(0,1) y* = |F* - xg| (+noise)

Fun facts about phase retrieval:

Physically meaningful!

« Zo symmetry in the signal space.

a = 1 should provide enough information for a perfect reconstruction.

Gradient descent struggles to reconstruct the signal until a ~ 10.



An example: Real-valued Phase Retrieval
Px, = N(0,1) y* = |F* - xg| (+noise)

Fun facts about phase retrieval:

Physically meaningful!

« Zo symmetry in the signal space.

a = 1 should provide enough information for a perfect reconstruction.

Gradient descent struggles to reconstruct the signal until a ~ 10.

Rigorous result about convexification ina « ~ log N regime.
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Inference Model

p(x) ~ 6_6 Hoor ()
GRAPHICAL MODEL

— Sensible choice:

Bayesian optimal: TBO — (CB)le

N

Estimator X :

/\

Maximum a posteriori: TpAp = (37) — 0
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Approximate Message-passing

How do we obtain Zyrap ? Easy (if everything is i.i.d.)
' Close on
% Gaussian single-site
p(aj) : . ansatz , quantities
BP rBP AMP (TAP)

@ ) Encoding prior
DEFINE 2 SCALAR tn dependence
INFERENCE CHANNELS: Encoding data

(I)out dependence

When do we get a good estimator?
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Effective Landscapes and Competition

(possible scenario)
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Breaking the symmetry

GAMP Vs GASP(s)
Replica symmetry 7 1RSB .‘/ i
assumption A assumption ’ . . AO
T 1
Input scalar channel: Input scalar channel:
(I)gls(B,A) = log/ dx e~ 34T +Be—pr(z) @}fSB(B,AO,Al;s) = 1log/Dz es Pin (B+vAoz,A1)

X S\
« Same computational complexity SYMMETRY BREAKING PARAMETER

* (Potentially) more expensive element-wise operations

* How to set the symmetry breaking parameter s ?



Message-passing equations

GAMP GASP(s)
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Conclusions

In mismatched inference settings the RS assumption can be wrong.

GASP can improve over GAMP. Same O(N”2) complexity.

Simple continuation strategy can push GASP down to the BO algorithmic threshold.

For more details please check my poster this evening!

THANK YOU FOR YOUR ATTENTION!



