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Counterfactual Regret Minimization (CFR)

[Zinkevich et al. NeurlPS-07]

* CFR is the leading algorithm for solving partially observable games
* |teratively converges to an equilibrium
* Used by every top poker Al in the past 7 years, including Libratus
* Every single one used a tabular form of CFR
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* This paper introduces a function approximation form of CFR using
deep neural networks
* Less domain knowledge
* Easier to apply to other games



Example Of MOﬂte Ca rlO CFR [Lanctot et al. NeurlPS-09]

e Simulate a game with one player
designated as the traverser
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Example Of MOﬂte Ca rlO CFR [Lanctot et al. NeurlPS-09]

e Simulate a game with one player
designated as the traverser

e After game ends, traverser sees how
much better she could have done by
choosing other actions
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Example of Monte Carlo CFR

e Simulate a game with one player
designated as the traverser

* After game ends, traverser sees how
much better she could have done by
choosing other actions

* This difference is added to the
action’s regret. In future iterations,
actions with higher regret are chosen
with higher probability




Example of Monte Carlo CFR

e Simulate a game with one player
designated as the traverser

* After game ends, traverser sees how
much better she could have done by
choosing other actions

* This difference is added to the
action’s regret. In future iterations,
actions with higher regret are chosen
with higher probability

* Process repeats even for
hypothetical decision points



Prior Approach: Abstraction in Games

Original game

* Requires extensive domain knowlec
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e Several papers written on how to do abstraction just in poker
 Difficult to extend to other games

Abstracted game

— A



Deep CFR

* Input: low-level features (visible cards, observed actions)
e Output: estimate of action regrets

* On each iteration:
1. Collect samples of action regrets, add to a buffer

2. Train a network to predict regrets
3. Use network’s regret estimates to play on next iteration
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Deep CFR

* Input: low-level features (visible cards, observed actions)
* Output: estimate of action regrets

* On each iteration:
1. Collect samples of action regrets, add to a buffer

2. Train a network to predict regrets
3. Use network’s regret estimates to play on next iteration

* Theorem: With arbitrarily high probability, Deep CFR converges to an
e-Nash equilibrium in two-player zero-sum games, where € is
determined by prediction error



Experimental results in limit Texas hold’em

* Deep CFR produces superhuman performance in heads-up limit Texas
hold’em poker
e ~10 trillion decision points
* Once played competitively by humans

* Deep CFR outperforms Neural Fictitious Self Play (NFSP), the prior best
deep RL algorithm for partially observable games
* Deep CFR is also much more sample efficient

* Deep CFR is competitive with domain-specific abstraction algorithms



Conclusions

 Among algorithms for non-tabular solving of partially-observable
games, Deep CFR is the fastest, most sample-efficient, and produces
the best results

e Uses less domain knowledge than abstraction-based approaches,
making it easier to apply to other games



