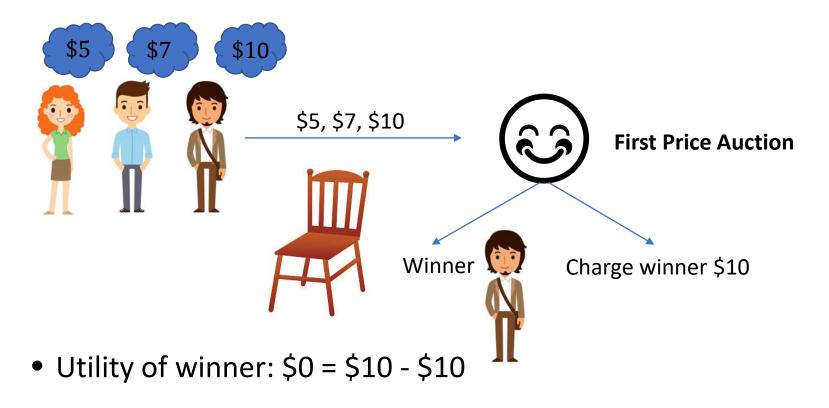
Optimal Auctions through Deep Learning

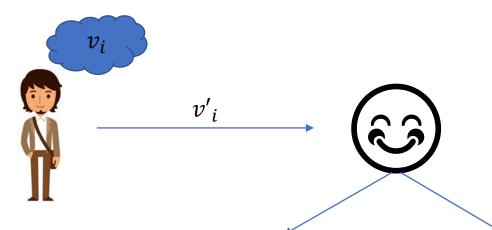
Zhe Feng

Harvard SEAS

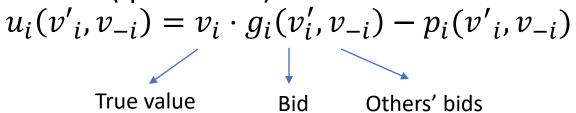
Joint work with

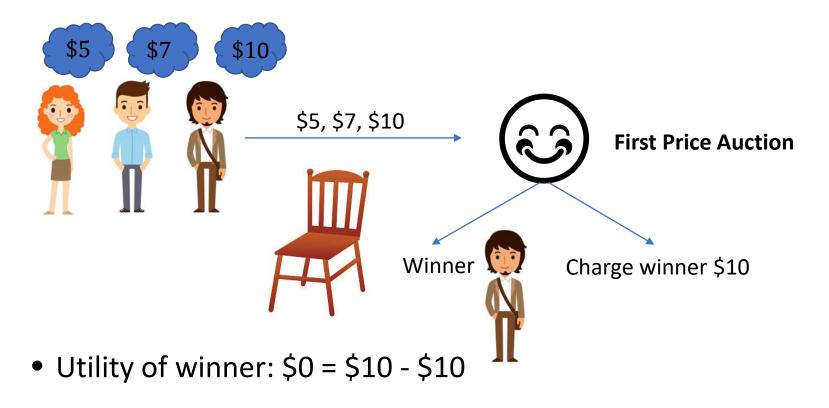
Paul Dütting (LSE), Harikrishna Narasimhan (Google), David C. Parkes (Harvard), Sai Srivatsa Ravindranath (Harvard)

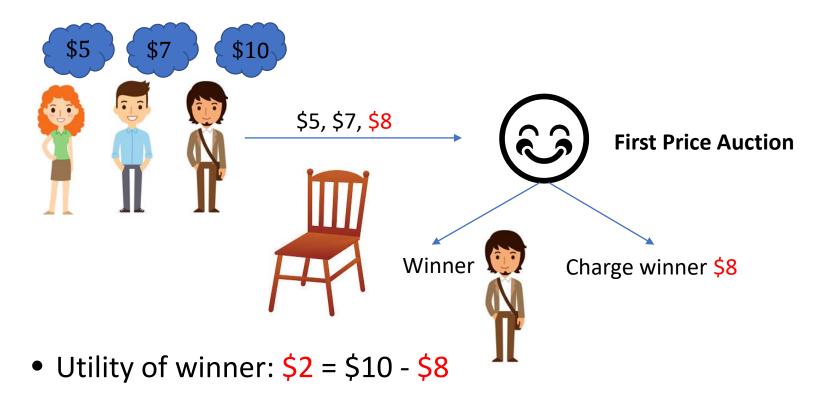




- Auction contains allocation rule g and payment rule p
- Utility function (quasilinear):







- Incentive Constraints
 - Dominate Strategy IC (Strategy Proof): no matter what the other bidders report, truth-telling is always the weakly dominant strategy for this bidder. $\forall i, v_i, v_i', v_{-i}, u_i(v_i, v_{-i}) \geq u_i(v_i', v_{-i})$.
 - Individual Rationality: $u_i(v_i, v_{-i}) \ge 0$, for all v and i.
- Maximize Expected Revenue
 - $E_v[\sum_i p_i(v_i, v_{-i})]$

• Q: How to sell one item to maximize revenue?

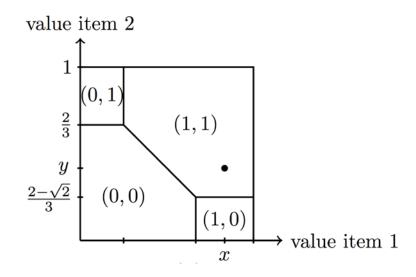
- Q: How to sell one item to maximize revenue?
- A: Myerson Auction (Myerson'81)!

- Q: How to sell one item to maximize revenue?
- A: Myerson Auction (Myerson'81)!
- Q: How to sell two items to maximize revenue?

- Q: How to sell one item to maximize revenue?
- A: Myerson Auction (Myerson'81)!
- Q: How to sell two items to maximize revenue?
- A: No complete analytical understanding!

Optimal Auction Design: Special cases

• (one additive buyer, two items) [Manelli & Vincent'06], [Haghpanah and Hartline'15], [Giannakopoulos and Koutsoupias'15,] [Daskalakis et al.'16]



Optimal Auction Design: Special cases

- (one additive buyer, two items) [Manelli & Vincent'06], [Haghpanah and Hartline'15], [Giannakopoulos and Koutsoupias'15,] [Daskalakis et al.'16]
- (one unit demand buyer, two items) [Pavlov'11]

Optimal Auction Design: Special cases

- (one additive buyer, two items) [Manelli & Vincent'06], [Haghpanah and Hartline'15], [Giannakopoulos and Koutsoupias'15,] [Daskalakis et al.'16]
- (one unit demand buyer, two items) [Pavlov'11]
- (two items, ≥ 2 bidders, support of size two) [Yao'17]

Dominant-Strategy versus Bayesian Multi-item Auctions: Maximum Revenue Determination and Comparison

ANDREW CHI-CHIH YAO, Tsinghua University

We address two related unanswered questions in maximum revenue multi-item auctions. Is dominant-strategy implementation equivalent to the semantically less stringent Bayesian one (as in the case of Myerson's 1-item auction)? Can one find explicit solutions for non-trivial families of multi-item auctions (as in the 1-item case)? In this paper, we present such natural families whose explicit solutions exhibit a revenue gap between the

Our Contribution

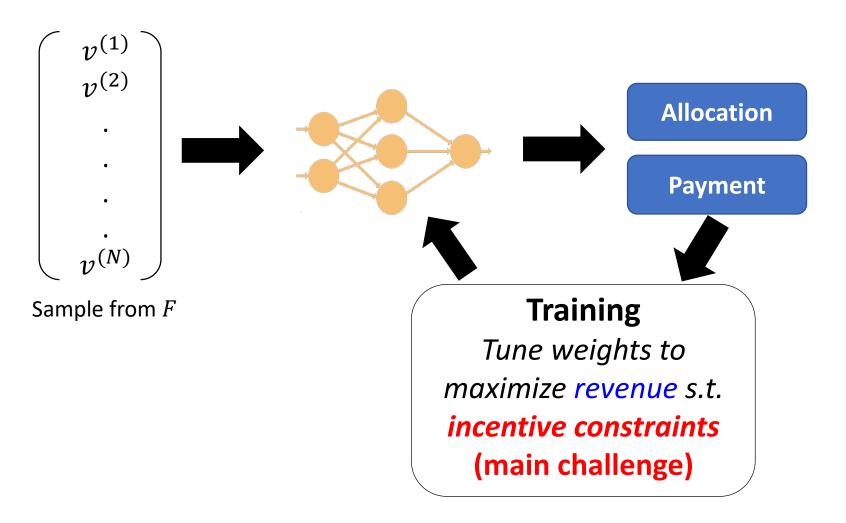
- Initiate the use of deep learning for optimal auction design. Motivate several follow-up works, [Feng et.al.'18], [Golowich et al.'18], [Manisha et al.'18], [Shen et al.'19]...
- Recreate state of the art analytical results of optimal auctions.
- Discover new auctions for settings where optimal solution is unknown.

Builds on Automated Mechanism Design [Conitzer & Sandholm'02] and Machine Learning for mechanism design [Dütting et al.'14, Narasimhan & Parkes'16].

The Problem

- A seller with a set of m items
- A set of n bidders with independent private valuations, $v_i: 2^M \to R_{\geq 0}$, $v_i \sim F_i$
- $F = (F_1, \dots, F_n)$ is known.
- Design auction (g^w, p^w) that maximizes expected revenue, s.t. strategy-proofness.
 - g^w is parametrized allocation rule
 - p^w is parametrized payment rule

Our Approach: RegretNet



16

RegretNet: Regret

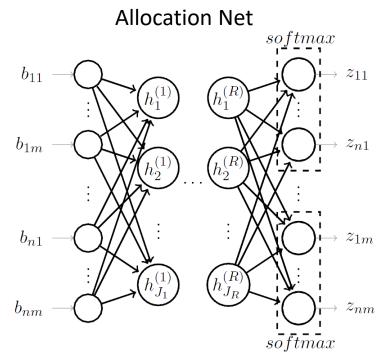
What is Regret (expected ex post regret)?

$$rgt_i^w = E_v \left[\max_{v_i'} u_i^w(v_i', v_{-i}) - u_i^w(v_i, v_{-i}) \right]$$

- Why Regret?
- Recap for Strategy-Proofness: Auction (g^w, p^w) is SP if $u_i^w(v_i', v_{-i}) \le u_i^w(v_i, v_{-i})$ for all i, all v, all v_i' .
- Ignoring measure zero events, Strategy-Proofness can be rewritten as: $rgt_i^w = 0$, for each bidder i.

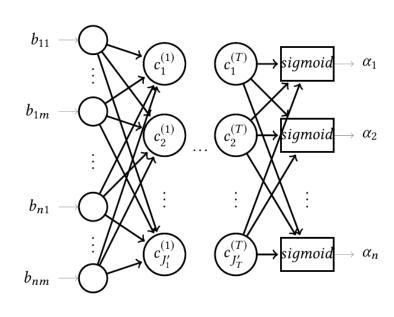
RegretNet: Architecture

m items, n additive bidders, the bid of bidder i for item j is b_{ij} . Parameters w.



Allocation: g^w : $\mathbb{R}^{nm} \to \Delta_1 \times \cdots \times \Delta_m$

Payment Net



Payment: $p^w \colon \mathbb{R}^{nm} \to \mathbb{R}^n_{\geq 0}$ Fractional payment: $p^w_i = \alpha_i \cdot (g^w_i \cdot v_i), \alpha_i \in [0,1]$

RegretNet: Training Problem

• Training problem:

$$\min_{w} \mathcal{L}(g^{w}, p^{w}) = -E_{v} \left[\sum_{i} p_{i}^{w}(v) \right]$$
s.t. $\forall i \in [n], \ rgt_{i}^{w} = 0$

Train via augmented Lagrangian Method to handle regret constraints

$$\begin{split} w_t \coloneqq \underset{w}{\operatorname{argmin}} [\mathcal{L}(g^w, p^w) + \sum_i \lambda_i^{t-1} \cdot rgt_i^w + \frac{\rho}{2} \sum_i (rgt_i^w)^2] \\ \forall i \in [n], \qquad \lambda_i^t \coloneqq \lambda_i^{t-1} + \rho \cdot rgt_i^{w_t} \end{split}$$

• Adaptively tune Lagrange multiplier. In our case, λ_i will always increase.

RegretNet: Inner Optimization

$$\underset{w}{\operatorname{argmin}} [\mathcal{L}(g^w, p^w) + \sum_{i} \lambda_i^{t-1} \cdot rgt_i^w + \frac{\rho}{2} \sum_{i} (rgt_i^w)^2]$$

- Use stochastic gradient descent (SGD)
- For each sample $v \sim F$
 - Loss: $-\sum_i p_i^w(v)$
 - Regret for bidder *i*:

$$rgt_i^w(v) = \max_{v_i'} u_i^w(v_i', v_{-i}) - u_i^w(v_i, v_{-i})$$

• Adversarial approach: run gradient ascent to find optimal misreport v'_i , given v and NN.

Theoretical Guarantee

- We show generalization bounds for both revenue and regret.
- Main challenge: The non-standard "max" structure in the regret.
- We measure the capacity of an auction class using a $L_{1,\infty}$ covering number.
- Bound the covering number for the NN architectures that we propose in the paper

Theoretical Guarantee

Thm 1 [Informal]. Fix $\delta \in (0,1)$, with high probability over sample of L profiles,

$$E_{v}\left[\sum_{i} p_{i}^{w}(v)\right] \geq \frac{1}{L} \sum_{\ell} \sum_{i} p_{i}^{w}\left(v^{(\ell)}\right) - 2n\Delta_{L} - \tilde{O}(n\sqrt{1/L})$$

$$\frac{1}{n} \sum_{i=1}^{n} rgt_i^w \le \frac{1}{n} \sum_{i=1}^{n} \widehat{rgt}_i^w + 2\Delta_L + \widetilde{O}(\sqrt{1/L})$$

Theoretical Guarantee

Thm 1 [Informal]. Fix $\delta \in (0,1)$, with high probability over sample of L profiles,

$$E_{v}\left[\sum_{i} p_{i}^{w}(v)\right] \geq \frac{1}{L} \sum_{\ell} \sum_{i} p_{i}^{w}\left(v^{(\ell)}\right) - 2n\Delta_{L} - \tilde{O}(n\sqrt{1/L})$$

$$\frac{1}{n} \sum_{i=1}^{n} rgt_i^w \le \frac{1}{n} \sum_{i=1}^{n} \widehat{rgt}_i^w + 2\Delta_L + \widetilde{O}(\sqrt{1/L})$$

Thm 2 [Informal]. Δ_L can be bounded as a function of L, m, n,

and # parameters in NN.
$$\Delta_L = O\left(\sqrt{\frac{\log L}{L}}\right)$$

Experiments

- TensorFlow library, Adam solver, NVDIA GPU core
- Learning rate 0.001 (fixed), min-batch size 128, parameter ρ initialized to 1.0, λ updates every 100 minibatches.
- Train on 640,000 valuation profiles, test on 10,000
- 2 hidden layers for smaller settings, 5 hidden layers for larger settings.

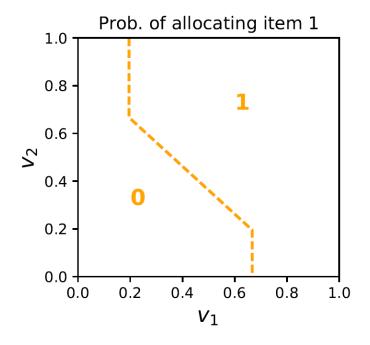
Experiments

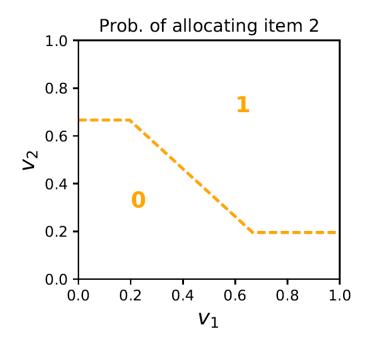
Can RegretNet recover known auction designs?

2-item 1-buyer (additive)

• v_1 , $v_2 \sim U[0,1]$, [Manelli & Vincent'06]

	Revenue Regret		
Optimal	0.550	-	
RegretNet	0.554	<0.001	

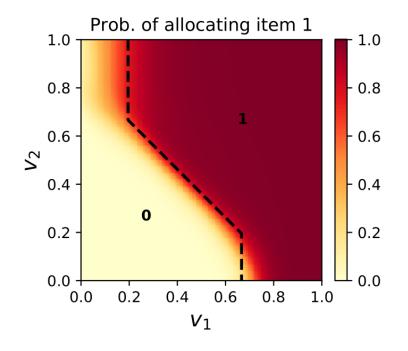


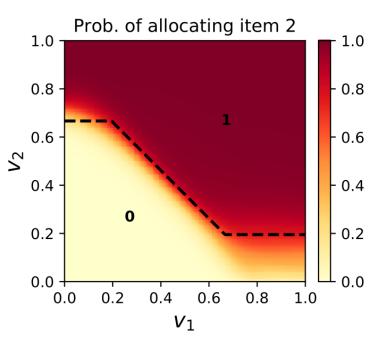


2-item 1-buyer (additive)

• $v_1, v_2 \sim U[0,1]$, [Manelli & Vincent'06]

	Revenue	Regret
Optimal	0.550	-
RegretNet	0.554	<0.001

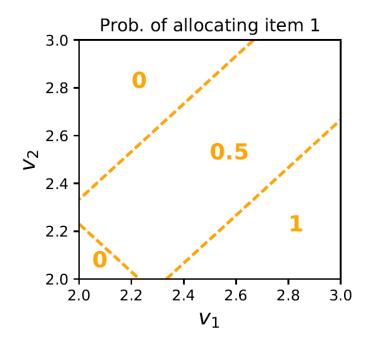


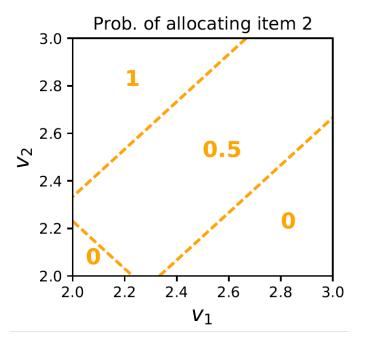


2-item 1-buyer (unit-demand)

• $v_1, v_2 \sim U[2,3]$, [Pavlov'11]

	Revenue	Regret
Optimal	2.137	-
RegretNet	2.137	<0.001

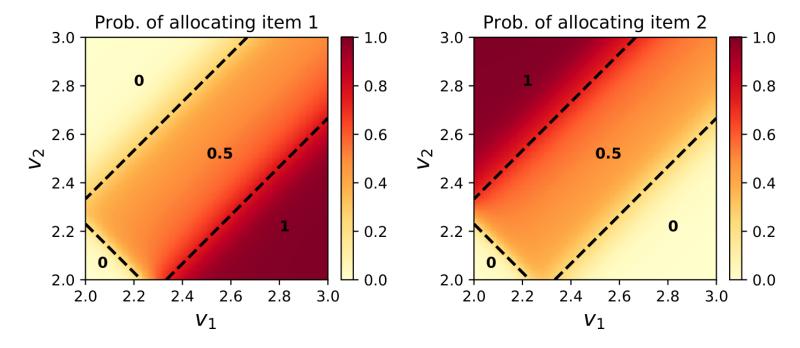




2-item 1-buyer (unit-demand)

• $v_1, v_2 \sim U[2,3], [Pavlov'11]$

	Revenue	Regret
Optimal	2.137	-
RegretNet	2.137	<0.001



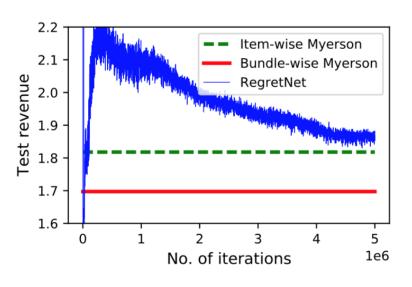
Experiments

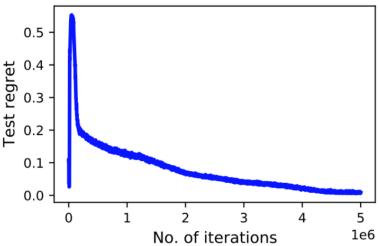
Can RegretNet discover new auctions?

2-item 2-bidder, 3 support

- Extends [Yao'17]
- For each bidder *i*:
 - Additive valuation
 - $v_{i,1} \sim unif\{0.5,1.0,1.5\}, v_{i,2} \sim unif\{0.5,1.0,1.5\}$

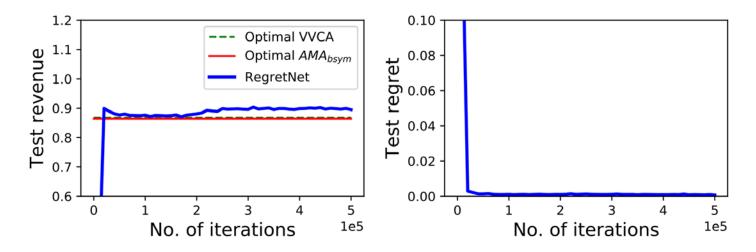
Experiments





2-item 2-bidder, uniform values

- Compare to [Likhodedov and Sandholm'15].
- Additive valuation:
 - $v_{1,1}, v_{1,2} \sim U[0,1], v_{2,1}, v_{2,2} \sim U[0,1]$
- Experiments



• In paper: combinatorial settings for 2-item, 2-bidder

Scaling up

- 3-bidder, 10-item, $v_{ij} \sim U[0,1]$
- 5-bidder, 10-item, $v_{ij} \sim U[0,1]$
- Experiments

Distribution	RegretNet		Item-wise Myerson	Bundle-wise Myerson
	Revenue	Regret	Revenue	Revenue
3 bidders, 10 items	5.541	<0.002	5.310	5.009
5 bidders, 10 items	6.778	<0.005	6.716	5.453

• Less than 13 hours training time, in contrast, LPs takes more than a week even for a 2-bidder, 3-item setting.

Future Work

- Scaling up
 - Universal network for different number of buyers and items.
 - Leverage economic structural results
- Guide economic theory: reveal gaps, test conjectures (e.g. "Pentagon conjecture" by Daskalakis et.al 13, "Revenue Monotonicity")
- Other settings: stability, fairness, group-SP

Resource

Poster: Pacific Ballroom #155, 6:30pm today!

• Full version: arxiv:1706.03459, for more experiments, theoretical analysis, and architectures (MyersonNet, RochetNet).

Thanks!