Optimal Auctions through
Deep Learning

Zhe Feng
Harvard SEAS

Joint work with
Paul Diuitting (LSE), Harikrishna Narasimhan (Google), David C. Parkes (Harvard),
Sai Srivatsa Ravindranath (Harvard)



Auction 101
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e Utility of winner: SO =510- 510

First Price Auction
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Auction 101

v,i @

e Auction contains allocation rule g and payment rule p

e Utility function (quasilinear):
w, (v, vo) = v gi(w,vo) — (v o)
v T

True value Bid Others’ bids
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Auction 101

70 ...

'ﬂ?P

o Utility of winner: $2 =510 - S8

First Price Auction

Winner Charge winner $8

==
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Auction 101

* Incentive Constraints

e Dominate Strategy IC (Strategy Proof): no matter what
the other bidders report, truth-telling is always the
weakly dominant strategy for this bidder.

. !/ !/
Vi, v, v, v, ui (v, vo) = w (v, vog).
e Individual Rationality: u;(v;, v_;) = 0, for all v and i.

* Maximize Expected Revenue
* Ey[ 20 (v, v_p)]



Optimal Auction Design

e Q: How to sell one item to maximize revenue?



Optimal Auction Design

e Q: How to sell one item to maximize revenue?

e A: Myerson Auction (Myerson’81)!
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Optimal Auction Design

e Q: How to sell one item to maximize revenue?
e A: Myerson Auction (Myerson’81)!
e Q: How to sell two items to maximize revenue?

e A: No complete analytical understanding!/ % o



Optimal Auction Design: Special cases

e (one additive buyer, two items) [Manelli & Vincent’06],
[Haghpanah and Hartline’15], [Giannakopoulos and
Koutsoupias’15,] [Daskalakis et al.16]

value item 2

1
(0,1)
2 (1,1)
y + °
521 (0,0)
(1,0)
' > value item 1
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Optimal Auction Design: Special cases

e (one additive buyer, two items) [Manelli & Vincent’06],
[Haghpanah and Hartline’15], [Giannakopoulos and
Koutsoupias’15,] [Daskalakis et al.16]

e (one unit demand buyer, two items) [Pavliov’'11]
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Optimal Auction Design: Special cases

e (one additive buyer, two items) [Manelli & Vincent’06],
[Haghpanah and Hartline’15], [Giannakopoulos and
Koutsoupias’15,] [Daskalakis et al.16]

e (one unit demand buyer, two items) [Pavliov’'11]

e (two items, = 2 bidders, support of size two) [Yao'17]

Dominant-Strategy versus Bayesian Multi-item Auctions:
Maximum Revenue Determination and Comparison

ANDREW CHI-CHIH YAQ, Tsinghua University

We address two related unanswered questions in maximum revenue multi-item auctions. Is dominant-
strategy implementation equivalent to the semantically less stringent Bayesian one (as in the case of Myerson's
1-item auction)? Can one find explicit solutions for non-trivial families of multi-item auctions (as in the 1-item
case)? In this paper, we present such natural families whose explicit solutions exhibit a revenue gap between the
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Our Contribution

* Initiate the use of deep learning for optimal auction
design. Motivate several follow-up works, [Feng

et.al.’18], [Golowich et al.’18], [Manisha et al.”18], [Shen et
al/19]...

e Recreate state of the art analytical results of
optimal auctions.

e Discover new auctions for settings where optimal
solution is unknown.

Builds on Automated Mechanism Design [Conitzer & Sandholm’02] and Machine
Learning for mechanism design [Dutting et al/14, Narasimhan & Parkes’16].
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The Problem

e A seller with a set of m items

e A set of n bidders with independent private
valuations, v;: 2M — R.q, v; ~ F;

e F = (F,, -, E,) is known.

* Design auction (g%, p") that maximizes expected
revenue, s.t. strategy-proofness.

e g% is parametrized allocation rule
e p" is parametrized payment rule



Our Approach: RegretNet

M
p(2)

Allocation

- - =
. Payment
_ p M) Y, ‘ l

Sample from F 4 Training N

Tune weights to
maximize revenue S.t.
incentive constraints

_ (main challenge) y
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RegretNet: Regret

e What is Regret (expected ex post regret)?

rgt’ = E, [Hlljaxu?(vi’, v_;) —ui (v, v-i)]
i

 Why Regret?

e Recap for Strategy-Proofness: Auction (g%, p")is SP if
w’ (vi,v_;) < uw (v, v_;) foralli, all v, all v;.

* Ignoring measure zero events, Strategy-Proofness can be
rewritten as: rgt}” = 0, for each bidder i.



RegretNet: Architecture

m items, n additive bidders, the bid of bidder i for item j is b;;.
Parameters w.
Allocation Net Payment Net

softmax
1= ==1

softmax
Allocation: g¥: R™ = A; X -+ X A, Payment: p*: R" — RZ,
Fractional payment:
pi =a;-(g{" vi) a; €[01]



RegretNet: Training Problem

e Training problem:
min £(g",p") = ~E,[ ) pl' ()]
i

st.Vi € [n], rgt] =0

e Train via augmented Lagrangian Method to handle regret constraints

w; == argmin[L(g",p") + E Af"l -rgt!’ + g E (rgtiw)z]
w -
l

i
Vi € [n], A=A +p rgt)”

e Adaptively tune Lagrange multiplier. In our case, A; will always increase.



RegretNet: Inner Optimization
argvf/nin[L(gW,pW) +Zlf_1 -rgty’ + gZ(rgtz”)z]

e Use stochastic gradient descent (SGD)

e Foreachsamplev ~ F

e Loss: — ), p (V)
e Regret for bidder i:

rgti’ (v) = maxu’ (v, v_;) — ' (v, v_;)
i

e Adversarial approach: run gradient ascent to find optimal misreport
v;, given v and NN.



Theoretical Guarantee

 We show generalization bounds for both revenue
and regret.

 Main challenge: The non-standard “max” structure in
the regret .

 We measure the capacity of an auction class using a
L1 « covering number.

* Bound the covering number for the NN architectures
that we propose in the paper



Theoretical Guarantee

Thm 1 [Informal]. Fix § € (0,1), with high probability over sample of L profiles,

1 ~
E,| ) bt (v)‘ = ZZ D vt (v9) 204, — O(ny/T/L)

n
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Theoretical Guarantee

Thm 1 [Informal]. Fix § € (0,1), with high probability over sample of L profiles,

1 ~
E,| ) bt (v)‘ = ZZ D vt (v9) 204, — O(ny/T/L)

n

1 o ~
— ) rgt’ < %2 rgt!” + 2A; + 0(\/1/L)

Thm 2 [Informal]. Ay, can be bounded as a function of L, m, n,

and # parameters in NN. A; = 0( lof L)
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Experiments

e TensorFlow library, Adam solver, NVDIA GPU core

e Learning rate 0.001 (fixed), min-batch size 128,
parameter p initialized to 1.0, A updates every 100
minibatches.

* Train on 640,000 valuation profiles, test on 10,000

e 2 hidden layers for smaller settings, 5 hidden layers
for larger settings.



Experiments

Can RegretNet recover
Kknown auction designs?



2-item 1-buyer (additive)
®* Vq,Uyp ~ U[O,l], [Manelli & Vincent’06]

I T T

Optimal 0.550 -
RegretNet 0.554 <0.001
Lo Prob. of allocating item 1 . Prob. of allocating item 2
: 1.
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Vi Vi
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2-item 1-buyer (additive)
* vy,V, ~ U|0,1], [Manelli & Vincent’06]

I T T

Optimal 0.550 -
RegretNet 0.554 <0.001
Prob. of allocating item 1 Prob. of allocating item 2

1.0 - : 1.0 1.0
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0.6 -

S
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0.0

0.0
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2-item 1-buyer (unit-demand)
° vy,V, ~ U|2,3], [Paviov’11]

I T T

Optimal 2.137 -
RegretNet 2.137 <0.001

20 Prob. of allocating item 1 2o Prob. of allocating item 2
2.8 A 2.8 4

2.6 1 2.6

< <
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Vi Vi
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2-item 1-buyer (unit-demand)
e vi,v, ~ U[2,3], [Paviov’11]

I T T

Optimal 2.137 -
RegretNet 2.137 <0.001

Prob. of allocating item 1 30 Prob. of allocating item 2

2.8 - 2.8
#
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o™ o™
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2.0‘ 20| T T T T —‘00
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Experiments

Can RegretNet discover
new auctions?



2-item 2-bidder, 3 support

e Extends [Yao'17]

 For each bidder i:
e Additive valuation
* v;1 ~unif{0.5,1.0,1.5}, v; , ~ unif{0.5,1.0, 1.5}

* Experiments

2.2
= = |tem-wise Myerson 05
2.1 A m—= Bundle-wise Myerson '
v —— RegretNet " ]
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2-item 2-bidder, uniform values

e Compare to [Likhodedov and Sandholm’15].
e Additive valuation:

* V1,1, V12 ~ Ulo,1], U1, V22 ~ Ul0,1]

* Experiments

1.2

Test revenue
o =
.

o
~

©
o

e |n paper: combinatorial settings for 2-item, 2-bidder
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Scaling up
* 3-bidder, 10-item, v;; ~ Ul0,1]
* 5-bidder, 10-item, v;; ~ Ul0,1]

* Experiments

Distribution RegretNet Item-wise | Bundle-wise
Myerson Myerson

Revenue Regret Revenue Revenue
3 bidders, 10 items 5.541 <0.002 5.310 5.009

5 bidders, 10 items _ <0.005 6.716 m

e Less than 13 hours training time, in contrast, LPs takes
more than a week even for a 2-bidder, 3-item setting.
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Future Work

e Scaling up
e Universal network for different number of buyers and
items.

e Leverage economic structural results

 Guide economic theory: reveal gaps, test
conjectures (e.g. “Pentagon conjecture” by
Daskalakis et.al 13, “Revenue Monotonicity” )

e Other settings: stability, fairness, group-SP



Resource

e Poster: Pacific Ballroom #155, 6:30pm today!

e Full version: arXiv:1706.03459, for more
experiments, theoretical analysis, and architectures
(MyersonNet, RochetNet).



https://arxiv.org/abs/1706.03459

Thanks!
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