Facundo Mémoli*, Zane Smith[†], Zhengchao Wan*

*The Ohio State University

†The University of Minnesota
https://research.math.osu.edu/networks/

¹Supported by NSF AF 1526513, NSF DMS 1723003, NSF DMS 1547357, and NSF CCF 1740761

Fix a metric space (X, d_X) and a parameter $\varepsilon > 0$. Given a dataset α , i.e., a probability measure on X with full support, for each point $x \in X$, let

$$m_{\alpha}^{(\varepsilon)}(x) := \frac{\alpha|_{B_{\varepsilon}(x)}}{\alpha(B_{\varepsilon}(x))}.$$

Fix a metric space (X, d_X) and a parameter $\varepsilon > 0$. Given a dataset α , i.e., a probability measure on X with full support, for each point $x \in X$, let

$$m_{\alpha}^{(\varepsilon)}(x) := \frac{\alpha|_{B_{\varepsilon}(x)}}{\alpha(B_{\varepsilon}(x))}.$$

The Wasserstein transform \mathbf{W}_{ε} applied to α gives the distance function $d_{\alpha}^{(\varepsilon)}$ on X defined by

$$d_{\alpha}^{(\varepsilon)}(x,x'):=d_{W,1}\left(m_{\alpha}^{(\varepsilon)}(x),m_{\alpha}^{(\varepsilon)}(x')\right),\forall x,x'\in X.$$

Fix a metric space (X, d_X) and a parameter $\varepsilon > 0$. Given a dataset α , i.e., a probability measure on X with full support, for each point $x \in X$, let

$$m_{\alpha}^{(\varepsilon)}(x) := \frac{\alpha|_{B_{\varepsilon}(x)}}{\alpha(B_{\varepsilon}(x))}.$$

The Wasserstein transform \mathbf{W}_{ε} applied to α gives the distance function $d_{\alpha}^{(\varepsilon)}$ on X defined by

$$d_{\alpha}^{(\varepsilon)}(x,x'):=d_{W,1}\left(m_{\alpha}^{(\varepsilon)}(x),m_{\alpha}^{(\varepsilon)}(x')\right),\forall x,x'\in X.$$

Note:

- ullet as arepsilon o 0 one has $d_lpha^{(arepsilon)}(x,x') o d_X(x,x')$ and
- as $\varepsilon \to \infty$ one has $d_{\alpha}^{(\varepsilon)}(x,x') \to 0$

Fix a metric space (X, d_X) and a parameter $\varepsilon > 0$. Given a dataset α , i.e., a probability measure on X with full support, for each point $x \in X$, let

$$m_{\alpha}^{(\varepsilon)}(x) := \frac{\alpha|_{B_{\varepsilon}(x)}}{\alpha(B_{\varepsilon}(x))}.$$

The Wasserstein transform \mathbf{W}_{ε} applied to α gives the distance function $d_{\alpha}^{(\varepsilon)}$ on X defined by

$$d_{\alpha}^{(\varepsilon)}(x,x'):=d_{W,1}\left(m_{\alpha}^{(\varepsilon)}(x),m_{\alpha}^{(\varepsilon)}(x')\right),\forall x,x'\in X.$$

Note:

- ullet as arepsilon o 0 one has $d_lpha^{(arepsilon)}(x,x') o d_X(x,x')$ and
- as $\varepsilon \to \infty$ one has $d_{\alpha}^{(\varepsilon)}(x,x') \to 0$

$\mathsf{Theorem}$

 \mathbf{W}_{ε} is stable when restricted to certain subsets of $\mathcal{P}_f(X)$.

The Wasserstein Transform can be viewed as a generalization of Mean Shift.

The Wasserstein Transform can be viewed as a generalization of Mean Shift.

Indeed, because when given two probability measures α and β on Euclidean space, $d_{W,1}(\alpha,\beta)$ is bounded below by the distance between their means, we get:

The Wasserstein Transform can be viewed as a generalization of Mean Shift.

Indeed, because when given two probability measures α and β on Euclidean space, $d_{W,1}(\alpha,\beta)$ is bounded below by the distance between their means, we get:

$$d_{\alpha}^{L^{ms}}(x,x'):=||\textit{mean}(\textit{m}_{\alpha}^{(\varepsilon)}(x))-\textit{mean}(\textit{m}_{\alpha}^{(\varepsilon)}(x'))||\leq d_{\alpha}^{(\varepsilon)}(x,x')$$

The Wasserstein Transform can be viewed as a generalization of Mean Shift.

Indeed, because when given two probability measures α and β on Euclidean space, $d_{W,1}(\alpha,\beta)$ is bounded below by the distance between their means, we get:

$$d_{\alpha}^{L^{ms}}(x,x'):=||\textit{mean}(\textit{m}_{\alpha}^{(\varepsilon)}(x))-\textit{mean}(\textit{m}_{\alpha}^{(\varepsilon)}(x'))||\leq d_{\alpha}^{(\varepsilon)}(x,x')$$

This means our stability result for \mathbf{W}_{ε} gives stability for Mean Shift, which remained unproven.

The Wasserstein Transform can be viewed as a generalization of Mean Shift.

Indeed, because when given two probability measures α and β on Euclidean space, $d_{W,1}(\alpha,\beta)$ is bounded below by the distance between their means, we get:

$$d_{\alpha}^{L^{ms}}(x,x'):=||\textit{mean}(\textit{m}_{\alpha}^{(\varepsilon)}(x))-\textit{mean}(\textit{m}_{\alpha}^{(\varepsilon)}(x'))||\leq d_{\alpha}^{(\varepsilon)}(x,x')$$

This means our stability result for \mathbf{W}_{ε} gives stability for Mean Shift, which remained unproven.

Theorem

Mean Shift is stable when restricted to certain subsets of $\mathcal{P}_f(X)$.

Ameliorating Chaining Effect

Figure: WT ameliorates chaining effect. A dumbbell shape consisting of two disk shaped blobs each with 100 points and separated by a thin chain of 30 points in the plane with Euclidean distance. The diameter of the initial shape was approximately 4. From left to right: 0,1, 2, 3, and 4, iterations of \mathbf{W}_{ε} for $\varepsilon=0.3$.

Denoising of a Circle: WT v.s. Meanshift

Figure: Denoising of a circle: several iterations of mean shift vs. W_{ε} . In each case ε was chosen to be 0.3 relative to the diameter at each iteration. This is useful as preprocessing step in TDA.

Discussion

- See the paper for performance of WT in classification tasks on MNIST and Grassmannian manifold data.
- Implementation: exploit Sinkhorn/entropic regularization of OT.
- Future work:
 - (1) investigate theoretical behaviour of the iterated WT: its connection with Ricci/gradient flows.
 - (2) study the experimental performance of versions of the WT based on l_p -Wasserstein distances for p>1 and/or other localization operators.