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W._ is stable when restricted to certain subsets of Pr(X).
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Mean Shift is stable when restricted to certain subsets of P¢(X).




Ameliorating Chaining Effect

Figure: WT ameliorates chaining effect. A dumbbell shape consisting
of two disk shaped blobs each with 100 points and separated by a thin
chain of 30 points in the plane with Euclidean distance. The diameter of
the initial shape was approximately 4. From left to right: 0,1, 2, 3, and
4, iterations of W, for ¢ = 0.3.



Denoising of a Circle: WT v.s. Meanshift

Figure: Denoising of a circle: several iterations of mean shift vs.
W.. In each case € was chosen to be 0.3 relative to the diameter at each

iteration. This is useful as preprocessing step in TDA.



Discussion

@ See the paper for performance of WT in classification tasks on
MNIST and Grassmannian manifold data.

@ Implementation: exploit Sinkhorn/entropic regularization of
OT.
e Future work:
(1) investigate theoretical behaviour of the iterated WT: its
connection with Ricci/gradient flows.
(2) study the experimental performance of versions of the WT
based on /,-Wasserstein distances for p > 1 and/or other
localization operators.



