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Figure 2. Iterating the Wasserstein transform: iteratively change
the metric based on density of points as indicated by α.

Remark 3.1 (Iterating the Wasserstein transform). The
Wasserstein transform can be iterated any desired number
of times with the purpose of successively enhancing features
and/or reducing noise. See Figure 2. After applying the
Wasserstein transform once to α ∈ Pf (X), the ambient
metric space (X, dX) is transformed into (X, dLα). Then we
can apply the Wasserstein transform again to α on the am-
bient space (X, dLα) etc. This fact is useful in applications
such as clustering, see Section 5.

3.3. Local Truncations

We now concentrate on a particular type of localization
operator which we call local truncation. Given α ∈ Pf (X)
and a scale parameter ε > 0, consider for each x ∈ X the
probability measure

m(ε)

α (x) :=
α|Bε(x)

α(Bε(x))
,

arising from restricting α to the closed ball Bε(x) and
then renormalizing to obtain a new probability measure.
In other words, for each set A ⊂ X , the measure of
that set is m(ε)

α (x)(A) = α(Bε(x)∩A)
α(Bε(x)) . When X is finite,

X = {x1, . . . , xn}, and α is its empirical measure, this
formula becomes

m(ε)

α (x)(A) =
#{i|xi ∈ A and dX(xi, x) ≤ ε}

#{i| dX(xi, x) ≤ ε} .

We denote the resulting Wasserstein transform by Wε, and
in this case, for each α, the new metric produced by Wε(α)
will be denoted as d(ε)

α . See Figure 1 for an intuitive expla-
nation.

Remark 3.2 (Behavior across scales). Notice that as ε→
∞ one has m(ε)

α (x) = α for any x ∈ X. However, for
ε → 0, m(ε)

α (x) → δx. In words, ε acts as a localization
parameter: for small ε the renormalized measures absorb
local information, whereas for large values the renormal-
ized measures for different points become indistinguishable.
Thus we have the following for any x, x′ in X:

(1) as ε→ 0 one has d(ε)
α (x, x′)→ dX(x, x′); and

(2) as ε→∞ one has d(ε)
α (x, x′)→ 0.
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Figure 3. After applying one iteration of the Wasserstein transform,
both the distance between A,C and the distance between C,E
should remain almost the same since these are all critical points of
f . According to the formula in Remark 3.3, since f ′ has negative
sign at B and B lies to the right of A, B will be pushed towardsA,
while D will be pushed away from A since f ′(D) > 0 and it lies
to the right of A. Similarly both D and F are pushed towards E.

Interpretation of Wε(α) on the real line. Using the fact
that the Wasserstein distance on R admits a closed form
expression (Villani, 2003) we are able to prove the following
Taylor expansion.

Remark 3.3 (Taylor expansion for d(ε)
α (x, x′) ). When X is

a subset of the real line, and the probability measure α has
a density f , we have the asymptotic formula for d(ε)

α (x, x′)
as ε→ 0: for x′ > x and f(x), f(x′) > 0,

d(ε)

α (x, x′) = x′ − x+
1

3

[
f ′(x′)
f(x′)

− f ′(x)

f(x)

]
ε2 +O(ε3).

The interpretation is that after one iteration of the Wasser-
stein transform Wε of α, pairs of points x and x′ on very
dense areas (reflected by large values of f(x) and f(x′))
will be at roughly the same distance they were before apply-
ing the Wasserstein transform. However, if one of the points,
say x′ is in a sparse area (i.e. f(x′) is small), then the
Wasserstein transform will push it away from x. It is also
interesting what happens when x and x′ are both critical
points of f : in that case the distance does not change (up to
order ε2). See Figure 3 for an illustration. See the supple-
mentary document for a proof of this Taylor expansion.

3.4. The Wasserstein Transform as a Generalization of
Mean Shift to Any Metric Space

Mean Shift (Cheng, 1995; Fukunaga & Hostetler, 1975) is
a clustering method for Euclidean data which operates by it-
eratively updating each data point until convergence accord-
ing to a rule that moves points towards the mean/barycenter
of their neighbors. More specifically, given a point cloud
X = {x1, . . . , xn} in Rd, a kernel functionK : R+ → R+,
and a scale parameter ε > 0, then in the kth iteration the ith
point is shifted as follows: xi(0) = xi and for k ≥ 0,

xi(k + 1) =

∑n
j=1K

(
‖xj(k)−xi(k)‖

ε

)
xj(k)

∑n
j=1K

(
‖xj(k)−xi(k)‖

ε

) . (1)

The kernels of choice are the Gaussian kernel K(t) =

e−t
2/2, the Epanechnikov kernel K(t) = max{1− t, 0}, or
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Fix a metric space (X , dX ) and a parameter ε > 0. Given a dataset
α, i.e., a probability measure on X with full support, for each point
x ∈ X , let

m(ε)
α (x) :=

α|Bε(x)

α(Bε(x))
.

The Wasserstein transform Wε applied to α gives the distance
function d (ε)

α on X defined by

d (ε)
α (x , x ′) := dW ,1

(
m(ε)
α (x),m(ε)

α (x ′)
)
,∀x , x ′ ∈ X .

Note:

as ε→ 0 one has d
(ε)
α (x , x ′)→ dX (x , x ′) and

as ε→∞ one has d
(ε)
α (x , x ′)→ 0

Theorem

Wε is stable when restricted to certain subsets of Pf (X ).
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Wasserstein Transform: Generalizing Mean Shift

The Wasserstein Transform can be viewed as a generalization of
Mean Shift.

Indeed, because when given two probability measures α and β on
Euclidean space, dW ,1(α, β) is bounded below by the distance
between their means, we get:

dLms

α (x , x ′) := ||mean(m(ε)
α (x))−mean(m(ε)

α (x ′))|| ≤ d (ε)
α (x , x ′)

This means our stability result for Wε gives stability for Mean
Shift, which remained unproven.

Theorem

Mean Shift is stable when restricted to certain subsets of Pf (X ).
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Ameliorating Chaining Effect

Figure: WT ameliorates chaining effect. A dumbbell shape consisting
of two disk shaped blobs each with 100 points and separated by a thin
chain of 30 points in the plane with Euclidean distance. The diameter of
the initial shape was approximately 4. From left to right: 0,1, 2, 3, and
4, iterations of Wε for ε = 0.3.
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Denoising of a Circle: WT v.s. Meanshift

MS

WT

Figure: Denoising of a circle: several iterations of mean shift vs.
Wε. In each case ε was chosen to be 0.3 relative to the diameter at each
iteration. This is useful as preprocessing step in TDA.
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Discussion

See the paper for performance of WT in classification tasks on
MNIST and Grassmannian manifold data.

Implementation: exploit Sinkhorn/entropic regularization of
OT.

Future work:

(1) investigate theoretical behaviour of the iterated WT: its
connection with Ricci/gradient flows.

(2) study the experimental performance of versions of the WT
based on lp-Wasserstein distances for p > 1 and/or other
localization operators.


