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Off-policy evaluation

The problem of estimating the value of a target policy, using data collected under a
different logging policy.

[Robins & Rotnitzky, 1995; Hahn, 1998; Hirano et al., 2003;Dudik et al., 2014; Li et al., 2015;

Thomas & Brunskill, 2016; Swaminathan et al., 2017; Wang et al., 2017; Athey & Wager, 2017;

Kallus & Zhou, 2018; Farajtabar et al., 2018; Joachims et al., 2018.]

Very relevant for applications, e.g., artwork optimization at Netflix.
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Bernoulli k-armed bandits

K Bernoulli arms, with (unknown) parameters Pa, for a = 1, . . . ,K

The logged data consist of n i.i.d. pairs (ai, ri) generated as follows:

1 K binary rewards are drawn as ra ∼ Pa, for a = 1, . . . ,K

2 Actions are drawn as ai ∼ µ where µ is the logging policy

3 We observe the rewards ri = rai

Using the logged data, we want to estimate the value of a target policy π:

v =
∑
a

πaPa
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Two popular estimators

The IPS estimator:

v̂IPS =
1

n

n∑
i=1

πi

µi
ri =

∑
a

πa
n+
a

nµa

The REG estimator:

v̂REG =
∑
a

πa
n+
a

na
I[na > 0]

where na =
∑

plays(a), and n+
a =

∑
rewards(a).
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This work: Design new instance-dependent estimators

Define parametrized estimator X via some function f : (N,N,R) 7→ R

X =
∑
a

f(na, n
+
a , θa)

When f is polynomial in na, n
+
a , the population risk (MSE) of X is closed-form.

Proof: Expand the MSE as a sum of expectations of functions of na and n+
a . Then use the

following result for multinomial counts (Mosimann, 1962):

E[(na)m] = (n)m µma ,

where (x)m = x(x− 1) · · · (x−m+ 1) is the m’th order falling factorial of x, and the fact that

any polynomial can be written as a linear combination of falling factorials (e.g., Newton series).
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Example: Parametrized control variates

Function f is linear in n+
a and bilinear in θa and na:

X = v̂IPS +
1

n

∑
a

θana

Risk of X is quadratic in θ:

nMSE[X] = n
(∑

a

µaθa
)2
−
(
v +

∑
a

µaθa
)2

+
∑
a

µaθ
2
a + 2

∑
a

Paπaθa +
∑
a

π2
a

µa
Pa
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How to deal with terms involving Pa?

Eliminate them (via known bounds, minimax solution, etc.). Several interesting
research questions here.

Approximate them using the logged data. Examples:

∑
a

Paπaθa ≈
∑
a

n+
a

nµa
πaθa

∑
a

Paπaθa ≈
∑
a

n+
a

na
I[na > 0]πaθa

[Thomas & Brunskill, 2016; Swaminathan et al., 2017; Farajtabar et al., 2018.]
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Experiments: K-armed bandits
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Experiments: Contextual bandits

Multiclass classification with bandit feedback (UCI datasets):

Dataset ecoli glass satimage vehicle yeast

Classes (K) 8 6 6 4 10
Sample size (n) 336 214 6435 846 1484

DM 0.4837 0.3170 0.3259 0.4090 0.1914
IPS 0.3074 0.3092 0.0724 0.1901 0.1111
DR 0.2136 0.2497 0.0402 0.1298 0.0840

MRDR 0.1673 0.3185 0.0302 0.1194 0.0824
DR IPS CV 0.2099 0.2271 0.0400 0.1266 0.0827

MRDR IPS CV 0.1665 0.3103 0.0302 0.1182 0.0818

DR IPS CV = DR− κDR · IPS , κ̂DR = Ĉov(DR,IPS)

Ê[IPS]2+V̂ar(IPS)
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Takehomes

There exist estimators that improve REG for k-armed bandits in the finite-sample regime.

We can improve DR for contextual bandits by operating outside the manifold of DR
estimators.

Key open question: Are there instance-dependent control variates that guarantee risk
improvement uniformly over the values of Pa?
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