On the Design of Estimators for Bandit Off-Policy Evaluation

Nikos Vlassis* Aurelien Bibaut[‡] Maria Dimakopoulou* Tony Jebara*

*NETFLIX [‡]UC Berkeley

ICML 2019

Off-policy evaluation

The problem of estimating the value of a target policy, using data collected under a different logging policy.

[Robins & Rotnitzky, 1995; Hahn, 1998; Hirano et al., 2003; Dudik et al., 2014; Li et al., 2015; Thomas & Brunskill, 2016; Swaminathan et al., 2017; Wang et al., 2017; Athey & Wager, 2017; Kallus & Zhou, 2018; Farajtabar et al., 2018; Joachims et al., 2018.]

Very relevant for applications, e.g., artwork optimization at Netflix.

Bernoulli k-armed bandits

K Bernoulli arms, with (unknown) parameters P_a , for $a=1,\ldots,K$

The logged data consist of n i.i.d. pairs (a_i, r_i) generated as follows:

- **1** Which binary rewards are drawn as $r_a \sim P_a$, for $a = 1, \dots, K$
- ② Actions are drawn as $a_i \sim \mu$ where μ is the logging policy
- $oldsymbol{0}$ We observe the rewards $r_i=r_{a_i}$

Using the logged data, we want to estimate the value of a target policy π :

$$v = \sum_{a} \pi_a P_a$$

Two popular estimators

The IPS estimator:

$$\hat{v}_{\text{IPS}} = rac{1}{n} \sum_{i=1}^{n} rac{\pi_{i}}{\mu_{i}} r_{i} = \sum_{a} \pi_{a} rac{n_{a}^{+}}{n \mu_{a}}$$

The REG estimator:

$$\hat{v}_{\text{REG}} = \sum_{a} \pi_a \, \frac{n_a^+}{n_a} \, \mathbb{I}[n_a > 0]$$

where $n_a = \sum \text{plays}(a)$, and $n_a^+ = \sum \text{rewards}(a)$.

This work: Design new instance-dependent estimators

Define parametrized estimator X via some function $f:(\mathbb{N},\mathbb{N},\mathbb{R})\mapsto\mathbb{R}$

$$X = \sum_{a} f(n_a, n_a^+, \theta_a)$$

When f is polynomial in n_a, n_a^+ , the population risk (MSE) of X is closed-form.

Proof: Expand the MSE as a sum of expectations of functions of n_a and n_a^+ . Then use the following result for multinomial counts (Mosimann, 1962):

$$\mathbb{E}[(n_a)_m] = (n)_m \, \mu_a^m,$$

where $(x)_m = x(x-1)\cdots(x-m+1)$ is the m'th order falling factorial of x, and the fact that any polynomial can be written as a linear combination of falling factorials (e.g., Newton series).

Example: Parametrized control variates

Function f is linear in n_a^+ and bilinear in θ_a and n_a :

$$X = \hat{v}_{\text{IPS}} + \frac{1}{n} \sum_{a} \theta_a n_a$$

Risk of X is quadratic in θ :

$$\begin{split} n \, \mathsf{MSE}[X] &= n \Big(\sum_a \mu_a \theta_a \Big)^2 - \Big(v + \sum_a \mu_a \theta_a \Big)^2 \\ &+ \sum_a \mu_a \theta_a^2 + 2 \sum_a P_a \pi_a \theta_a + \sum_a \frac{\pi_a^2}{\mu_a} P_a \end{split}$$

How to deal with terms involving P_a ?

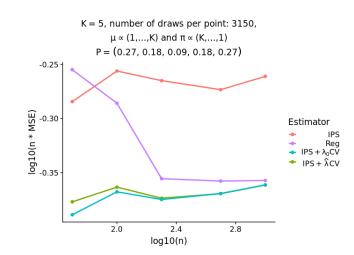
- Eliminate them (via known bounds, minimax solution, etc.). Several interesting research questions here.
- Approximate them using the logged data. Examples:

$$\sum_{a} P_a \pi_a \theta_a \approx \sum_{a} \frac{n_a^+}{n\mu_a} \pi_a \theta_a$$

$$\sum_{a} P_a \pi_a \theta_a \approx \sum_{a} \frac{n_a^+}{n_a} \mathbb{I}[n_a > 0] \pi_a \theta_a$$

[Thomas & Brunskill, 2016; Swaminathan et al., 2017; Farajtabar et al., 2018.]

Experiments: K-armed bandits



Experiments: Contextual bandits

Multiclass classification with bandit feedback (UCI datasets):

Dataset	ecoli	glass	satimage	vehicle	yeast
Classes (K)	8	6	6	4	10
Sample size (n)	336	214	6435	846	1484
DM	0.4837	0.3170	0.3259	0.4090	0.1914
IPS	0.3074	0.3092	0.0724	0.1901	0.1111
DR	0.2136	0.2497	0.0402	0.1298	0.0840
MRDR	0.1673	0.3185	0.0302	0.1194	0.0824
DR IPS CV	0.2099	0.2271	0.0400	0.1266	0.0827
MRDR IPS CV	0.1665	0.3103	0.0302	0.1182	0.0818

$$\text{DR IPS CV} = \text{DR} - \kappa_{\text{DR}} \cdot \text{IPS} \ , \qquad \hat{\kappa}_{\text{DR}} = \frac{\widehat{\text{Cov}}(\text{DR},\text{IPS})}{\widehat{\mathbb{E}}[\text{IPS}]^2 + \widehat{\text{Var}}(\text{IPS})}$$

Takehomes

There exist estimators that improve REG for k-armed bandits in the finite-sample regime.

We can improve DR for contextual bandits by operating outside the manifold of DR estimators.

Key open question: Are there instance-dependent control variates that guarantee risk improvement uniformly over the values of P_a ?