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Off-policy evaluation

The problem of estimating the value of a target policy, using data collected under a
different logging policy.

[Robins & Rotnitzky, 1995; Hahn, 1998; Hirano et al., 2003;Dudik et al., 2014; Li et al., 2015;
Thomas & Brunskill, 2016, Swaminathan et al., 2017; Wang et al., 2017; Athey & Wager, 2017;
Kallus & Zhou, 2018; Farajtabar et al., 2018; Joachims et al., 2018.]

Very relevant for applications, e.g., artwork optimization at Netflix.
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Bernoulli k-armed bandits

K Bernoulli arms, with (unknown) parameters P,, fora=1,..., K

The logged data consist of n i.i.d. pairs (a;, ;) generated as follows:
@ K binary rewards are drawn as 74 ~ P, fora=1,..., K
@ Actions are drawn as a; ~ p where i is the logging policy

© We observe the rewards r; = 74,

Using the logged data, we want to estimate the value of a target policy 7:

v = ZﬂaPa
a



Two popular estimators

The IPS estimator:
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The REG estimator: N
n
Orec = o ——1T[ng, >0
UREG za:ﬂ' . [TL ]

where ng = Y plays(a), and nj = > rewards(a).



This work: Design new instance-dependent estimators

Define parametrized estimator X via some function f: (N,N,R) — R

X:Zf(na7n:78a)

When f is polynomial in n,,n}, the population risk (MSE) of X is closed-form. J

Proof: Expand the MSE as a sum of expectations of functions of ng and ng. Then use the
following result for multinomial counts (Mosimann, 1962):

]E[(na)m] = (n)m M7an7

where (z),, = x(x — 1) --- (x — m + 1) is the m'th order falling factorial of z, and the fact that
any polynomial can be written as a linear combination of falling factorials (e.g., Newton series).
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Example: Parametrized control variates

Function f is linear in n:f and bilinear in 0, and ng:

1
X =19 - ea a
Uips + n Ea n

Risk of X is quadratic in 6:
nMSE[X] = n(ZMaQaY _ (U + Z,ua@a)Q

+ > gl +2Y  Pamaba+ Y Z—gPa
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How to deal with terms involving P,?

o Eliminate them (via known bounds, minimax solution, etc.). Several interesting
research questions here.

@ Approximate them using the logged data. Examples:

ZPawaea ~ Z na Taba

NYlq

a

ZP(ﬂraGa ~ Z Z—;— I[ng > 0] maba

a

[Thomas & Brunskill, 2016; Swaminathan et al., 2017; Farajtabar et al., 2018.]



Experiments: K-armed bandits
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Experiments: Contextual bandits

Multiclass classification with bandit feedback (UCI datasets):

l Dataset H ecoli [ glass [ satimage [ vehicle [ yeast
Classes (K) 8 6 6 4 10

Sample size (n) 336 214 6435 846 1484

DM 0.4837 | 0.3170 0.3259 0.4090 | 0.1914

IPS 0.3074 | 0.3092 0.0724 0.1901 | 0.1111

DR 0.2136 | 0.2497 0.0402 0.1298 | 0.0840

MRDR 0.1673 | 0.3185 | 0.0302 | 0.1194 | 0.0824

DR IPS CV 0.2099 | 0.2271 0.0400 0.1266 | 0.0827

MRDR IPS CV || 0.1665 | 0.3103 | 0.0302 | 0.1182 | 0.0818

DR IPS CV = DR — #ipr - IPS | fipg = ~C2U(DRIPS)

E[IPS]2+Var(IPS)



Takehomes

There exist estimators that improve REG for k-armed bandits in the finite-sample regime.

We can improve DR for contextual bandits by operating outside the manifold of DR
estimators.

Key open question: Are there instance-dependent control variates that guarantee risk
improvement uniformly over the values of P,?
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