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Semi-bandits Example

Day 1 15 mins

Day 2 13 mins

Day 3 16 mins

...

Goal: minimize the average commuting time



Types of Environments

i.i.d.
(more benign)

adversarial

Algorithms for i.i.d.: perform bad in the adversarial case.
Algorithms for adversarial: when the environment is i.i.d., they do
not take advantage of it.

⇒ To achieve optimal performance, they need to know
which environments they are in and pick the corresponding
algorithms.
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Motivation

i.i.d.
(more benign)

unknown
mixed

adversarial

What if

1. We have no prior knowledge about the environment.

2. The environment is usually i.i.d., but we want to be robust to
adversarial attack.

3. The environment is usually arbitrary but we want to exploit
the benignness when we got lucky.



Our Results

I We propose the first semi-bandit algorithm that has optimal
performance guarantees in both i.i.d. and adversarial
environments, without knowing which environment it is in.



Formalizing Semi-bandits

Given: action set X = {X (1),X (2), . . .} ⊆ {0, 1}d .

(set of all
paths)

For t = 1, . . . ,T ,

I The learner chooses Xt ∈ X

(choose a path)

.

I The environment reveals `ti for which Xti = 1.

(reveal the cost on each chosen edge)

I The learner suffers loss 〈Xt , `t〉.

(suffer the path cost)

d = #edges
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Semi-bandits Regret Bounds

Goal: Minimize

Regret = E

[
T∑
t=1

〈Xt , `t〉

]
︸ ︷︷ ︸
Learner’s total cost

− min
X∈X

E

[
T∑
t=1

〈X , `t〉

]
︸ ︷︷ ︸

Best fixed action’s total cost

.

I When `t are i.i.d.: Regret = Θ (logT )

I When `t are adversarially generated: Regret = Θ
(√

T
)

Our algorithm: always has O(
√
T ), but gets O(logT ) when

the losses happen to be i.i.d.



Related Work in Multi-armed Bandit (MAB)

MAB is special case of SB with X = {e1, . . . , ed}.

Algorithm Idea

SAO [BS12]
SAPO [AC16]

i.i.d. algorithm + non-i.i.d. detection

EXP3++
[SS14, SL17]

adversarial algorithm (EXP3)

+ sophisticated exploration mechanism

BROAD [WL18]
T-INF [ZS19]

(optimal)

adversarial algorithm (FTRL with special regularizer)

+ improved analysis

Our work is a generalization of [WL18] and [ZS19]’s idea to
semi-bandits.
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Algorithm

Following the Regularized Leader

Learning rate ηt = 1/
√
t, regularizer Ψ

for t = 1, 2, 3, . . .

I Compute

xt = argmin
x∈Conv(X )

〈
x ,

t−1∑
s=1

ˆ̀
s

〉
+ η−1

t Ψ(x).

I Sample Xt such that E[Xt ] = xt ,
and observe `ti for i with Xti = 1.

I Construct `t ’s unbiased estimator ˆ̀
t : ˆ̀

ti = `ti1[Xti=1]
xti

.
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Regularizer (Key Contribution)

Two-sided hybrid regularizer:

Ψ(x) =
d∑

i=1

−
√
xi︸ ︷︷ ︸

[AB09]’s Poly-INF

+
d∑

i=1

(1− xi ) log(1− xi )︸ ︷︷ ︸
Neg-entropy for complement

.

Intuition:

I when xi is close to 0, the learner starves for information
⇒ like a bandit problem
⇒ using the optimal regularizer for bandit (Poly-INF)

I when xi is close to 1
⇒ like a full-info problem
⇒ using the optimal regularizer for full-info (Neg-entropy)
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Results Overview

Env.
X

General

{X ∈ {0, 1}d : ‖X‖1 = m} {0, 1}d

i.i.d. md log T
∆min

∑
i>m

log T
∆i

∑
i

log T
∆i

Adversarial
√
mdT

{√
mdT , m ≤ d

2

(d −m)
√
T log d m > d

2

d
√
T

m , maxX∈X ‖X‖1.
∆min = E[second-best action’s loss]− E[best action’s loss]

(minimal optimality gap)
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Analysis Steps

1. Analyze FTRL for the new regularizer and get O(
√
T ) for the

adversarial setting.

2. Further use self-bounding technique to get O(logT ) for the
i.i.d. setting.



Analyzing FTRL for the New Regularizer

Key lemma.

Reg ≤
T∑
t=1

1√
t

∑
i

min

{
√
xti , (1− xti )

(
1 + log

1

1− xti

)}
.

Remarks.

1. The analysis is mostly standard, but needs more care (don’t
drop some terms as did in usual analysis).

2. The two-sided-ness of the regularizer is the key to get
“min{·, ·}”.

3. From this bound, we get O(
√
T ) bound easily.



Self-bounding to Get O(logT ) Bound

Reg ≤
T∑
t=1

1√
t

∑
i

min

{
√
xti , (1− xti )

(
1 + log

1

1− xti

)}
︸ ︷︷ ︸

Goal: upper bound this by C
√

Pr[Xt 6= X∗]

Intuitively true: Pr[Xt 6= X ∗]→ 0

⇒ xt → X ∗

⇒ the above expression→ 0.
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∑
t
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C
√

Pr[Xt 6= X ∗]√
t

≤
∑
t

C 2

2t∆min
+
∑
t

∆min Pr[Xt 6= X ∗]

2

(AM-GM)

Thus,
∑

t ∆min Pr[Xt 6= X ∗] ≤
∑T

t=1
C2

t∆min
= C2 log T

∆min

=⇒ Reg ≤ C2 log T
∆min

.
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Experiments (regret vs. time)
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Summary

I This paper considers semi-bandits, and proposes the first
single algorithm that has optimal regret guarantees both in
adversarial and i.i.d. environments.

I The algorithm is a simple instantiation of the Follow the
Regularized Leader framework. The keys to get O(logT )
bound in the i.i.d. setting are to

1. use the two-sided hybrid regularizer
2. analyze it using the self-bounding technique

I Experiments show our algorithm indeed has best-of-both-world
performance, while previous algorithms do not.
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