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Stochastic Multi-Armed Bandit

e Learning agent sequentially pulls K arms in n rounds

Arm 1 Arm 2

The agent pulls arm | in round t € [n] and observes its reward

Reward of arm i is in [0, 1] and drawn i.i.d. from a distribution with mean p.
Goal: Maximize the expected n-round reward

Challenge: Exploration-exploitation trade-off



Thompson Sampling (Thompson, 1933)

e Sample y,, from posterior distribution P;, and pull arm | = argmax; y, ,
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Thompson Sampling (Thompson, 1933)

e Sample y,, from posterior distribution P;, and pull arm | = argmax; y, ,

My Bernoulli bandit

2t P.. = beta

Gaussian bandit
Pit = normal

_ Expected reward
e Key properties Neural network

o P., concentrates at p. with the number of pulls B =W
o M., overestimates p. with a sufficient probability



General Randomized Exploration

e Sample y., from pesterter distribution P, , and pull arm |, = argmax. M

“25

2t
How do we design
distribution P.,?

_ Expected reward
e Key properties

o P., concentrates at (scaled and shifted) . with the number of pulls
o M., overestimates (scaled and shifted) p. with a sufficient probability
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o M., overestimates scaled and shifted p. with a sufficient probability
o Bias in the estimate of .



Contextual Giro with [0, 1] Rewards

e Straightforward generalization to complex structured problems
e | isthe estimated reward of arm i in a model trained on a non-parametric
bootstrap sample of the history with pseudo-rewards (garbage)

History Garbage Bootstrap sample M.
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e Giro is as general as the g-greedy policy... but no tuning!

(X3’n) x5, 1) (x5, 1) model



How to do bandits with
neural networks easily?

How does Giro compare to
Thompson sampling?

See you at poster #123!



