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Centrality among Bandits

▶ Placement of sensors used
for measuring temperature in
a region.

▶ Best set of towers which
approximate the whole
network.

Aim: Find arm with highest information about other arms
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Minimum Mean Squared Error Estimation

▶ Jointly Gaussian arms XM = (X1, . . . , XK), with zero mean and
covariance matrix Σ ≜ E[XTMXM].

MMSE

Ei ≜ min
g
E
[(
XM − g(Xi)

)T(XM − g(Xi)
)]

=
K∑
j=1

E

[(
Xj −E[Xj|Xi]

)2]
=

∑
j ̸=i

σ2j (1− ρ2ij)

The optimal

g∗(Xi) = E[XM|Xi] = [E[X1|Xi] . . .E[XK|Xi]]T ,

with E[Xj|Xi] =
E[XjXi]
E[X2i ]

Xi =
ρijσj
σi

Xi.

3



Correlated Bandits

Input: set of arm-pairs S ≜ {(i, j) | i, j = 1, . . . , K, i < j}, number of rounds n

For t = 1, 2, . . . , n do

Select a pair (it, jt) ∈ S

Observe a sample from the bivariate
distribution corresponding to the arms it, jt

endfor

Output an arm Ân

based on sample-based MSE-value estimates

necessary for estimating correlation structure

so that P (An ̸= i∗) is minimized.
Here i∗ = argmin

i∈M
Ei.
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MSE Estimation and Concentration

Based on samples of the Gaussian arms:

MSE of arm i

Êi ≜
∑
j ̸=i

σ̂2j

(
1− ρ̂2ij

)
.

Sample variance Sample correlation

MSE Concentration: Assume σ2i ≤ 1, i = 1, . . . , K. Then, for any
i = 1, . . . , K, and for any ϵ ∈ [0, 2K], we have

P

(∣∣∣Êi − Ei
∣∣∣ > ϵ

)
≤ 14K exp

(
−nl

2ϵ2

cK5

)
,

where c is a universal constant, and 0 < l = min
i

σ2i .
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SR algorithm: Illustration of arm-pair elimination

Maintain active arms and arm-pairs

(1,2) (1,3) (1,4) (1,5)

(2,3) (2,4) (2,5)

(3,4) (3,5)

(4,5)

Active arm-pairs after arms 4, 5 are
eliminated

(1,2) (1,3) (1,4) (1,5)

(2,3) (2,4) (2,5)

(3,4) (3,5)

(4,5)

Active arm-pairs after arms 3, 4, 5
are eliminated
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Successive Rejects: An algorithm to find the best arm

Initial-
ization

A1 = all arm pairs,
B1 = {1, . . . , K},

nk =

⌈
n−

(K
2
)

C(K) (K+ 1− k)

⌉
, C(K) ≈

K log K.

Phase 1
Pull each pair in A1, n1
times; Set Bk+1 = Bk\
arm with lowest MSE

Phase 2
Play each arm pair in A2,
n2 − n1 times; Eliminate . . .

...
...

Phase
K − 1

Play the remaining two arm
pairs nK−1 − nK−2 times

▶ One arm pair played n1
times, . . ., another two
played n2 times

▶ k arms played nk+1 times

▶
K−1∑
k=1

(k− 1)nk + (K− 1)nK−1 < n,

▶ nk increases with k

▶ Adaptive exploration:
better than uniform (=
play each arm-pair
n/

(
K
2

)
times)
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Thanks. Questions?
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