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Supervised learning

‘ Learn from input-output pairs ‘ m

Data collection
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Predict output of
unseen input accurately

Machine learning

Prediction function



https://t.pimg.jp/006/570/886/1/6570886.jpg
https://www.kullabs.com/uploads/meauring-clip-art-at-clker-com-vector-clip-art-online-royalty-free-H2SJHF-clipart.png
https://d3njjcbhbojbot.cloudfront.net/api/utilities/v1/imageproxy/https:/coursera.s3.amazonaws.com/topics/ml/large-icon.png

3

Learning from corrupted labels

Data collection
Labeling process

Feature
collection

ur goal
Noise-robust ML

Prediction function

O

Examples:

Expert labelers (human error)
Crowdsourcing (non-expert error)
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y € {—1,1}: Label

Wa rmup: Blnary Classrﬁcat'On g: R® — R : Prediction function

xr € R? :Feature vector

/: R —- R :Margin loss function
* Given: input-output pairs:

1.1.d.
{332', Yi ?:1 N p(l‘, y) 1.0 — Zero-one

N 0.5]
-y

0.0

* Goal: minimize expected error:

, yg(x) <0 2 yg(z) >0
Rro-1 (g) — K [E()_l (yg(m))] different sign same sign
(CB,’y)Np(EI},y)

No access to distribution: minimize empirical error (vapnik, 1998):

R (g) = 2 50 [t (g @)



Surrogate losses

Minimizing 0-1 loss directly is difficult.
e Discontinuous and not differentiable (sen-david+, 2003, Feldman+, 2012)

In practice, we minimize a surrogate l0ss (zhang, 2004, Bartlett+, 2006).

W\ T W — e
m / dmes |y €{-1,1}: Label
o g: RY R : Prediction function

x € R? : Feature vector

0.0




Learning from corrupted labels

(Scott+, 2013, Menon+, 2015, Lu+, 2019)
Given: Two sets of corrupted data:

Positive: Xcp 1= {xFT }ICP o pos(x) + (1 — m) neg(x)

: i.i.d.
Negative: XCN = {:C,?N}?glN TR 0S (.’L‘) + (1 _ 71") neg(a:)
Class priors
1 ! m,m' € [0,1]
Clean: m=1,7 =0 (@) : p(aly = 1)
s _ : _
Positive-unlabeled: 7 = 1, 7" < 1 (duPlessis+, 2014) neg(x) : p(aly = 1)

This setting covers many weakly-supervised settings (Lu+, 2019).



Issue on class priors

Given: Two sets of corrupted data:

positive:  Xcp 1= {xCP e "X 1 pos(x) + (1 — 7) neg(x)

Negative: Xy := {zFN }ON L pos () + (1 — ') neg(x)

Assumption: 71 > 7’
Problem: , ™’ are unidentifiable from samples (scott+, 2013).

How to learn without estimating m, 7’ ?




Related work:

Class priors are needed! (Lu+, 2019)

Class priors are not needed! (Menon+, 2015)

Classification error: Epl-]: E
Rlo1 (g) E 4o-1(yg(x))] Ex[]: E
(z,y)~p(x,y) z~neg(z)

Balanced error rate (BER):

1 1

Ry (9) = §EP lo1(g(="))] + §EN L1 (—g(x"))]

R (9) = Ep[En[lo1(g(z") — g(x™))]]

Area under the receiver operating characteristic curve (AUC) risk:




Related work: BER and AUC optimization

Menon+, 2015: we can treat corrupted data as if they were clean.
The proof relies on a property of 0-1 loss.
Squared loss was used in experiments.

van Rooyen+, 2015: symmetric losses are also useful for BER
minimization (no experiments).

Ours: using symmetric loss is preferable for both BER and AUC
theoretically and experimentally!
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Symmetric losses 4(z) + ¢(~z) = Constant

1.5 N
\ =*== Sigmoid
1.0 A —— Ramp
_ —-— Unhinged
= 0.5
\' ..........
\o
— \
0.5 0 z

Applications:
Risk estimator simplification in weakly-supervised learning
(du Plessis+, 2014, Kiryo+, 2017, Lu+, 2018)

Robustness under symmetric noise (label flip with a fixed probability)
(Ghosh+, 2015, van Rooyen+, 2015)
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AUC maximization f(z,z')=g(z)—g(z')

Theorem 1. Ler'(x, ') = 0(f(x',x)) + ((f(x,2')). Then Rivc.con(9) can be
expressed as

RAUC-COH(Q) = (7 — ?‘J)RAUC(Q) -+ (Tr‘r — W"’T’)EJr [E— [”7 (ﬁ3+$113—)”
Corrupted risk Clean risk ~ ~- /

Excessive term

TEVEL @] + S TR B e,

L. -
W

Excessive term

+

Symmetric losses: 4(z) +{(—z) =K

When ‘(. ') = K which holds for symmetric losses, we have

Excessive terms become constant!

,. (]l —T+ T
RAyuc-Con(9) = (m — ") Rhvelg) +|K ( ; il ) .

Excessive terms can be safely ignored with symmetric losses () ‘
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BER minimization

Theorem 3. Let 7 (x) = ((g(x)) + U(—g(x)), Ry, .com(g) can be expressed as

7’ “a — mE_[~Y(x
ReBal-Corr(g) — (W o W,)RFBa.l(g) + E+ h/ ( )] - (21 )E h/ ( )] .

Corrupted risk Clean risk |~ v

W

Excessive term

Symmetric IOSSES: E(z) T E(_Z) =K l Excessive term becomes constant!

When ~/(x) = K which holds for symmetric losses, we have

l—m+n'
RéBal—Corr(g) — (W - W’)R%a‘l(g) HK ( 5 ) .

Coincides with van Rooyen 2015+

Excessive terms can be safely ignored with symmetric losses(_) ‘
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Theoretical properties of symmetric losses

Nonnegative symmetric losses are non-convex.
. du Plessis+, , Ghosh+,
- Theory of convex losses cannot be applied. () '@ P'essis* 2014, Ghosh, 2015)

We provide a better understanding of symmetric losses: (L)
 Necessary and sufficient condition for classification-calibration
 Excess risk bound in binary classification
* Inability to estimate class posterior probability
* A sufficient condition for AUC-consistency

» Covers many symmetric losses, e.g., sigmoid, ramp.
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Convex symmetric losses?
By sacrificing nonnegativity:

only unhinged loss is convex and symmetric (van Rooyen:, 2015).

3 ~
TS —— Zero-one
.x.-._h._h‘.h 1 1 Un hinged
N 1 s
=y R"‘m,‘__
-1 [ i z

This loss has been considered (although robustness was not discussed).
(Devroye-+, 1996, Schoelkopf+, 2002, Shawe-Taylor+, 2004, Sriperumbudur+, 2009, Reid+, 2011)



Barrier hinge loss

—— Sigmoid
=== Hinge

-- Squared
— Barrier hinge

£(2)

((z) = max(—s(w + z) + w,max(s(z — w),w — z))

s > 1 slope of the non-symmetric region.
w >0 width of symmetric region.
High penalty if misclassify or output is outside symmetric region.



Symmetricity of barrier hinge loss

1z)+2(-2)

5

— Sigmoid
~== Hinge

-- Squared
—— Barrier hinge ’

-

Satisfies symmetric property in an interval.

If output range is restricted in a symmetric region:

unhinged, hinge , barrier are equivalent.

20
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Experiments: BER/AUC optimization from corrupted labels

To empirically answer the following questions:

1. Does the symmetric condition significantly help?

2. Do we need a loss to be symmetric everywhere?

3. Does the negative unboundedness degrade the practical performance?

We conducted the following experiments: Fix the models, vary the loss functions
Losses: Barrier [b=200, r=50], Unhinged, Sigmoid, Logistic, Hinge, Squared, Savage
Experiment 1:

MLPs on UCI/LIBSVM datasets.
Experiment 2:

CNNs on more difficult datasets (MNIST, CIFAR-10).
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Experiments: BER/AUC optimization from corrupted labels

For UCI datasets:
Multilayered perceptrons (MLPs) with one hidden layer: [d-500-1]
Activation function: Rectifier Linear Units (ReLU) (Nair+, 2010)

MNIST and CIFAR-10:

Convolutional neural networks (CNNs):
[d-Conv[18,5,1,0]-Max[2,2]-Conv[48,5,1,0]-Max[2,2]-800-400-1]
RelLU after fully connected layer follows by dropout layer (Srivastava+, 2010)

MNIST: Odd numbers vs Even numbers
CIFAR: One class vs Airplane (follows Ishida+, 2017)

Conv([18, 5, 1, 0]: 18 channels, 5 x 5 convolutions, stride 1, padding O
Max[2,2]: max pooling with kernel size 2 and stride 2
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Experiment 1: MLPs on UCI/LIBSVM datasets
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Figure 4: Mean balanced accuracy (1-BER) and AUC score using multilayer perceptrons (rescaled
to 0-100) with varying noise rates (7 = 1.0, 7" = 0.0),(r = 0.8, 7' = 0.3), (7 = 0.7,7' = 0.4), (7 =
0.65, 7" = 0.45). The experiments were conducted 20 times.

The higher the better.

Dataset information and more experiments and can be found in our paper.
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Experiment 1: MLPs on UCI/LIBSVM datasets

‘ Symmetric losses and barrier hinge loss are preferable! ‘

Table 2. Mean balanced accuracy (BAC=1-BER) and AUC score using multilayer perceptrons (rescaled to 0-100), where m = 0.65 and
7" = 0.45. Outperforming methods are highlighted in boldface using one-sided t-test with the significance level 5%. The experiments
were conducted 20 times.

Dataset Task | Barrier Unhinged | Sigmoid | JLogistic Hinge Squared | Savage
spambase BAC | 82.3(0.8) | 84.1(0.6) | 80.9(0.6) 7’2.6(0.?) 74.7(0.7) | 69.5(0.7) | 73.6(0.6)
AUC | 86.8(0.7) | 90.9 (0.4) | 86.0(0.4) |§79.2(0.8) | 77.7(0.7) | 73.6(0.8) | 80.1(0.8)
waveform BAC | 86.1(0.4) | 87.1 (0.6) 85.4(0.6) 75.8(0.7) | 78.3(0.7) | 69.2(0.6) | 73.2(0.6)
AUC | 92.2(0.4) | 91.7 (0.6) | 90.9 (0.6) | [32.3(0.7) | 79.8(0.9) | 75.1(0.7) | 80.1(0.6)
Wonorm BAC ] 96.2 (0.3) | 96.7 (0.2) | 95.4(0.4) | R0.2(0.5) | 82.8(0.9) | 71.6(0.7) | 75.9(0.6)
| AUC | 99.1(0.1) | 99.6 (0.0) | 98.0(0.2) | 88.3(0.5) | 83.9(0.7) | 77.3(0.7) | 82.7(0.5)
mushroom BAC | 93.4(0.8) | 91.1(0.9) | 94.4 (0.7) |81.3(0.5) | 84.5(1.0) 72.‘%(0.6) (9 )(0 8)
AUC §98.4(0.2) | 97.2(0.4) | 97.8 (0.3) | 89.0(0.5) | 82.2(0.6) | 77.8(0.6) | 88.1(0.7)

The higher the better.
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Experiment 2: CNNs on MNIST/CIFAR-10
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Figure 5: Mean balanced accuracy (1-BER) and AUC score using convolutional neural networks
(rescaled to 0-100). (Top) the varying noise rates ranged from(w = 1.0, 7" = 0.0), (7 = 0.8, 7" =
0.3),(mr =0.7,7" = 0.4), (r = 0.65, 7" = 0.45). (Bottom) the noise rate is 7 = 0.65 and 7’ = 0.45.
The experiments were conducted 10 times.
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Conclusion

-0.5

We showed that symmetric loss is preferable under corrupted labels for:

.........
~
o
L]

== Sigmoid
—— Ramp
—-= Unhinged

*a
Y a
......

* Area under the receiver operating characteristic curve (AUC) maximization

e Balanced error rate (BER) minimization

We provided general theoretical properties for symmetric losses:
* Classification-calibration, excess risk bound, AUC-consistency
* Inability of estimating the class posterior probability

We proposed a barrier hinge loss:

* As a proof of concept of the importance of symmetric condition

 Symmetric only in an interval but benefits greatly from symmetric condition

 Significantly outperformed all losses in BER/AUC optimization using CNNs

z
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