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o Ssuggests that a good regularizer should upper bound the generalization gap

_________________________________________________________________________________________________________________________________
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What makes a good regularizer?

e Want to find regularizer R that minimizes L,__(6.)

~. Regularized training loss
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Liest (OR) :{Slack(ﬁ) — suboptimality (0)} — slack(fg) + const
c

Approximate by maximizing over small set of models
(estimating test loss using validation set)
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Learning linear regularizers

e Linear regularizer: R(8) = A * feature_vector(0)

e LearnReg: given models with known training & validation loss, finds

best A (in terms of approximation on previous slide)

» Solves a sequence of linear programs

» Under certain assumptions, can “jump” to optimal A given data from just 1 + |A\| models

e TuneReg: uses LearnReg iteratively to do hyperparameter tuning



Hyperparameter tuning experiment

e Inception-v3 transfer learning problem, linear combination of 4 regularizers
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Hyperparameter tuning experiment

e Inception-v3 transfer learning problem, linear combination of 4 regularizers
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