Optimal Transport for structured data
with application on graphs
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Joint work with Laetitia Chapel, Remi Flamary, Romain Tavenard and Nicolas Courty

A novel distance between labeled graphs
based on optimal transport
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Contributions:

- Differentiable distance between labeled graphs.
Jointly considers the features and the structures



Contributions:

Differentiable distance between labeled graphs.
Jointly considers the features and the structures

Optimal transport: soft
assignment between the
Nodes

Distance = 1.41



Contributions:

- Differentiable distance between labeled graphs.
Jointly considers the features and the structures

1(© N Q ) = {;:;} Computing average
: of labeled graphs



Structured data as probability distribution
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Optimal transport in a nutshell

Compare two probability distributions by transporting one onto
another
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Fused Gromov-Wasserstein distance

FGW, (u,v) = min )" ((1 = @)d(a, b)? + a| Ci(i,k) = G, D |* )7y,
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where 7 Is the soft assignment matrix
a IS a trade-off features/structures



Fused Gromov-Wasserstein distance

Properties

Interpolate between Wasserstein distance on features and Gromov-Wasserstein distance on the structures

Distance on labeled graph: vanishes iff graphs have same labels and weights at the same place up to a permutation

Optimization problem

Non convex Quadratic Program: hard !
Conditional Gradient Descent (aka Frank Wolfe)

Suitable for entropic regularization + Sinkhorn iteraterations



Applications

Classification

LABELED GRAPHS SocCIAL GRAPHS VECTOR ATTRIBUTES GRAPH
DATASET MUTAG PTC NCI1 IMDB-B SYNTHETIC PROTEIN CUNEIFORM
WL 86.21+8.15 62.17+£7.80 85.13+1.61 | UNAPPLICABLE(U) U U U
GK 82.424+8.40 56.46+8.03  60.78+2.48 56.00+3.61 41.13+4.68 U U
RW 79.47+8.17 55.09+£7.34  58.63+2.44 U U U U
SP 85.79+2.51 58.53+2.55  73.00%0.51 55.80+2.93 38.93+5.12 U U
HOPPER U U U U 90.67+4.67 71.96+3.22 32.59+8.73
PROPA U U U U 64.67+6.70 61.34+4.38 12.59+ 6.67
PSCN k=10 | 83.47£10.26 58.34+7.71  70.65%2.58 U 100.00£0.00  67.95£11.28 25.19+7.73
FGW 88.42+5.67 65.31+7.90 §6.42+1.63 63.80+3.49 100.00+0.00 74.55+2.74 76.67+7.04
Graph Barycenter + k-means clustering of graphs
Noiseless graph  Sample 1 Sample 2 Sample 3 Sample 4 Sample 5 Sample 6 Bary n=15 Bary n=/
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Check out our poster at

Paclfic

Ballroom #133!!



