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● Use Case: Estimate label given compound sparse categorical features.
○ Predict if a KickStarter campaign will succeed given its name “Superhero Teddy Bear”.
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[Deep Sets, Zaheer et al. 2017]
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● Monotonicity: output does not decrease as E(Y | “Superhero”) or E(Y | “Teddy Bear”) increases.
● Conditioning: conditioning feature (count/size) tells how much to trust primary feature.

Set function properties for more regularization and better interpretability

Can we learn flexible set functions while satisfying such properties?

Learned Set Function ({
    [0.3, 100, 1],
    [0.9, 50, 2]})
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Example lattice function
● Monotonicity

● Conditioning (Edgeworth)

● Conditioning (Trapezoid)

● Constrained empirical risk minimization based on SGD
● Shapes constraints work for normal functions

(set size = 1) using DLN as well

1-D PLF

Multi-D Lattice
x2[1]x2[2]x2[3]

Using Deep Lattice Network (DLN) (You et al. 2017)



Semantic Feature Engine

● Estimate E(Y | “Superhero Teddy Bear”)

● Shape constraints
○ Monotonicity: Output monotonically increasing wrt. each ngram estimate.
○ Conditioning: Trust more frequent ngrams more...

● Similar accuracy as Deep Sets (Zaheer et al. 2017) and DNN, but with 
guarantees on model behavior producing better generalization and more 
debuggability.

Estimate
E[Y |T B]

E[Y | S]
E[Y | T]
E[Y | B]

E[Y | “S T B”]“S T B”

S T B
S T
T B
S
T
B

Tokenize Filter Set Function
E[Y | T B]
count
order

E[Y | S]
count
order
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