Sparse Extreme Multi-label
Learning with Oracle Property



Introduction

Extreme Multi-label classification

Each instance is associated with an extremely large number of labels.
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Existing Methods

e Bhatia et al. (2015) :

SLEEC : learns a small ensemble of local distance
preserving embeddings and shows great promise in extreme multi-
label learning.

However, the statistical rate of convergence and oracle
property of SLEEC remain less explored.



The Proposed Estimator

Let V* represents the unknown sparse regression coefficient matrix and W denotes
a noise matrix. We consider a multiple regression model as follows :

Z=V"X+W

We propose to estimate \A/* by minimizing the following objective:
V =argmin, [|Z-VX [} +u 2]V [} +3,(V)

whereR,(V)is a decomposable nonconvex regularization.

Nonconvex penalty functions, such as smoothly clipped absolute deviation (SCAD)
penalty (Fan & Li, 2001) and minimax concave penalty (MCP) (Zhang, 2010), have
recently attracted much attention because they can eliminate the estimation bias and
attain attractive statistical properties. This work takes SCAD and MCP penalties as
the example.



Main Theory

e The oracle estimator is defined as: Vo = argmin L(V)
supp(V)CS*

Theorem 1. Suppose the nonconvex penalty 2)\(V) =
Z(f_? i)y P (I,-"(M)) satisfies regulariry conditions (i), (ii), (iii).
We assume the orac l(f estimator f‘b defined in Eq.(7) satis-
fies ming; jyes+ |(Vo)upnl = v If p > ¢, || X|[|lr < 1/n,
and V'* satisfies ||V *||oo < 1/(1\/n), we have

(i) V ="Vo.

e Remark. Theorem 1 shows that our proposed estimator is identical to the oracle
estimator under suitable conditions. This is a very strong result because we do not
even have any oracle knowledge on the true support. Moreover, our proposed
estimator is able to achieve the desirable statistical convergence rate for estimating

V>,



Main Theory

Theorem 2. We assume that H(”)ES*| > v, while
|V G 3)65*\ < v. Suppose the nonconvex penalty P2, (V') =
Z(m) Pa (Vi 5y) satisfies regularity conditions (i), (ii), (iii)
and (iv). Given i > (, for the estimator defined in E-
q-(4) with regularization parameter )\ =C \/lon my/nime
(C' > 0), and max; jyes-us+ |[VLV*) @l < A we have

\V V| C’«/q‘ log 14 3(1/92 log my
V=7 ( —C),/-n-mg (,u — gjﬂfnm

Ny

=1 |1/ J|>1'J =o: |1/ J|-<U

(.3 (i,

Remark. The upper bound in Theorem 2 includes two parts corresponding to
different magnitudes of the entries in V* : 1) the first part corresponds to the set of
entries with larger magnitudes; and (2) the second part corresponds to the set of
entries with smaller magnitudes. \We are able to achieve the sharper convergence
rate.



Precision and nDCG Results

Table 2. Precision@Fk (k=1.3.5) comparisons on three medium-sized data sets. The best reqults are in bold.
Datasets | CS CPLST ML-CSSP 1-vs-All REML FastXML LEML SLEEC] SML-SCAD SML-MCP,
P@1|58.87 62.38 44 .98 62.62 65.13 63.42 62.54 65.08 66.43 67.39
Bibtex P@3|33.53 37.84 30.43 39.09  41.45 39.23 38.41 39.64 41.18 42.86
P@5 (2372 27.62 23.53 2879  30.12 28.80 28.21 28.87 30.25 31.56
P@1 |61.36 65.31 63.04 65.02  66.30 69.61 65.67 67.59 67.83 68.79
Delicious P@3|56.46 59.95 56.26 58.88 61.73 64.12 60.55 61.36 63.45 65.49
P@5|52.07 5531 50.16 53.28 56.89 59.27 56.08 56.56 58.39 60.56
P@1|83.82 83.35 78.95 83.57 86.37 84.22 84.01 87.82 89.56 88.32
Mediamill P@3 |67.32 66.18 60.93 65.50 73.97 67.33 67.20 73.45 74.46 73.89
P@5|52.80 5146 44.27 48.57  59.53 53.04 52.80 59.17 60.53 59.86
Table 3. nDCG@Fk (k=1,3,5) comparisons on three medium-sized data sets. The best resufts are in bold.
Datasets | CS CPLST ML-CSSP 1-vs-All REML FastXML LEML SLEEC] SML-SCAD SML-MCP
nDCG@1|58.87 62.38 44 98 62.62 65.13 63.42 62.54 65.08 66.43 67.39
Bibtex nDCG@3|52.19 57.63 44.67 59.13 60.01 59.51 5822 6047 61.02 61.23
nDCG@5)53.25 59.71 47.97 61.58 62.46 61.70 60.53 62.64 62.89 63.04
nDCG@1|61.36 6531 63.04 65.02 6630 69.61 65.67 67.59 67.83 68.79
Delicious nDCG@3|57.66 61.16 57.91 6043 62.65 6547 6177 62.87 63.95 66.76
nDCG@35|54.44 57.80 53.36 56.28  39.10 61.90 5847 59.28 60.12 62.13
nDCG@1|83.82 83.35 78.95 83.57 86.73 84.22 84.01 87.82 89.56 88.32
Mediamill nDCG@3|75.29 74.21 68.97 73.84 82.67 7541 7523 81.50 83.84 82.35
nDCG@5|71.92 70.55 62.88 68.18 78.32 72.37 71.96 79.22 81.32 80.63

Our proposed methods, SML-SCAD and SML-MCP, achieve the best results on all
data sets.



Conclusion

In this paper, we present a unified framework for SLEEC
with nonconvex penalty.

Our theoretical results show that our proposed estimator

enjoys oracle property, and achieves an attractive statistical
convergence rate.

In addition, we can obtain a sharper convergence rate when
a certain condition on the magnitude of the entries in the
underlying model is imposed.

Numerical experiments support our theoretical results and
demonstrate the effectiveness of the proposed method.



Thank You!
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