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High Dimensional and Small-Sample Data Situations

« Brain imaging, Genomics, Seismology, Astronomy, Chemistry, etc.
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Fitting Complex Models in These Situations

Challenges
1. Large feature dimension: due to rich temporal and spatial resolution

2. Noise in the data: due to artifacts unrelated to the effect of interest

3. Small sample size: due to logistics and cost of data acquisition

Regularization Strategies
« Early Stopping: [Yao, 2007]

1 and £, penalties: [Tibshirami 1996]
Pooling Layers in CNNs: [Hinton 2012]
Group LASSO: [Yuan 2006]

Dropout: [Srivastana 2014]
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 Group LASSO: [Yuan 2000].......ccceviiiiii i STRUCTURE + SPARSITY
* Dropout: [Srivastana 2014 ].........ooiiiiiiii e, STOCHASTICITY

POSTER: Pacific Ballroom #121, 06/11, Tuesday STEVENS INSTITUTE of TECHNOLOGY



Fitting Complex Models in These Situations

Challenges
1. Large feature dimension: due to rich temporal and spatial resolution

2. Noise in the data: due to artifacts unrelated to the effect of interest

3. Small sample size: due to logistics and cost of data acquisition

Regularization Strategies
« Early Stopping: [Yao, 2007]

¢4 and ¥, penalties: [Tibshirami 1996]

 Pooling Layers in CNNs: [Hinton 2012]....................... TRANSLATION INVARIANCE
 Group LASSO: [Yuan 2000].......ccceviiiiii i STRUCTURE + SPARSITY
* Dropout: [Srivastana 2014 ].........ooiiiiiiii e, STOCHASTICITY

- PROPOSED: Use STRUCTURE & STOCHASTICITY

POSTER: Pacific Ballroom #121, 06/11, Tuesday STEVENS INSTITUTE of TECHNOLOGY



Feature Grouping to Capture Structure

Algorithm

Training Data

 ReNA: a data-driven, graph constrained feature

E Recursive Nearest Agglomeration (ReNA) grouping algorithm

[Hoyos et al 2016]
« Each feature (pixel) is assigned to a cluster.

oo # Clusters are then recursively merged until the
desired number of clusters remain.
» Benefits of ReNA: (i) a fast clustering algorithm
(ii) leads to good signal approximations.

Feature Grouping Matrix & € Rk X D Reduction and Low-rank Approximation
Original Approximation
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Algorithm 1 Training of a Neural Network with Feature
P ro p os e d A p p ro a c h Grouping as a Stochastic Regularizer
Require: Learning Rate

Consider fully connected neural network with H layers Require: Tnitial Parameters for [ layers
© £ {Wo,bo,Wi,by,--- Wy, by}
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P r o 0 s e d A r o a ch Algorithm 1 Training of a Neural Network with Feature
p p p Grouping as a Stochastic Regularizer
Require: Learning Rate
Pre-compute a bank of feature grouping matrices Require: Initial Parameters for [ layers
© 2 {Wy, by, Wy,by,--- , Wg, by}
Ensure: Generate a bank of feature grouping matrices where

each is generated by randomly sampling  samples from the
training data set with replacement
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Algorithm 1 Training of a Neural Network with Feature

P ro p Os e d A p p ro a c h Grouping as a Stochastic Regularizer

Require: Learning Rate
Samp|e from the training set Require: Initial Parameters for H layers
® £ {Wy,by, Wy,by, -, Wy, by}
Ensure: Generate a bank of feature grouping matrices where
each is generated by randomly sampling  samples from the
training data set with replacement

] i AT .. w Wﬁl @:{@(1),@(2),.“’@@)}
[TITT 11 NEEEN | 1: while stopping criteria not met do

| = = 2:  Sample a minibatch of m samples from the training set
= (1) (™) wi i (i)
@ {x'", ..., x'"} with corresponding labels y
A}

Feature Grouping
Matrices
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Algorithm 1 Training of a Neural Network with Feature

P ro p Os e d A p p ro a c h Grouping as a Stochastic Regularizer

Require: Learning Rate
Sample (I) from the bank of feature grouping matrices Require: Initial Parameters for [ layers
® £ {Wy,by, Wy,by, -, Wy, by}
Ensure: Generate a bank of feature grouping matrices where
each is generated by randomly sampling  samples from the
training data set with replacement
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(3 o T T NEEEE 1: while stopping criteria not met do

® ; | = — 2:  Sample a minibatch of m samples from the training set
5 S ~ {x® ... x(™1} with corresponding labels y(*)

© A 3:  Sample ® from the bank &.

iy il ‘

Randomly
picked matrix P
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Proposed Approach

Re-define parameter space and project input onto lower

dimensional space

[T [T [T

Randomly Output Layer
picked matrix ¢ l PERSON X

B v

PERSON M

I -=rson

softmax (Wla Wodx + bu) - bl)

Forward Propagation
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Feature Grouping
Ma}rices
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Algorithm 1 Training of a Neural Network with Feature
Grouping as a Stochastic Regularizer
Require: Learning Rate
Require: Initial Parameters for H layers
® 2 {Wj, by, Wy,by,--- ,Wg, by}
Ensure: Generate a bank of feature grouping matrices where
each is generated by randomly sampling  samples from the
training data set with replacement

b = {q)(l), @(2), . ’@(b)}

1: while stopping criteria not met do
2:  Sample a minibatch of m samples from the training set

{x® ... x(™1} with corresponding labels y(*)
3:  Sample ® from the bank .

Define = £ {Wo,bo,Wl,b1,~-- ,WH,bH} where
Wo 2 Wb’
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Proposed Approach

Apply back propagation

[T [T [T

Output Layer
. PERSON X

PERSON M

W()Qx + b()) + bl)

-

Feature Grouping
Ma}rices

Randomly
picked matrix P
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softmax (Wla
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Algorithm 1 Training of a Neural Network with Feature
Grouping as a Stochastic Regularizer

Require: Learning Rate
Require: Initial Parameters for H layers

Ensure: Generate a bank of feature grouping matrices where

1:
2:

3:

© £ {Wo,bo,Wi,by,--- Wy, by}

each is generated by randomly sampling  samples from the
training data set with replacement
P — {q)(l),q,(?),,,, ’Q(m}

while stopping criteria not met do

Sample a minibatch of m samples from the training set

{x® ... x(™1} with corresponding labels y(*)

Sample ® from the bank &.

Define = £ {Wo,bo,Wl,bl,--- ,WH,bH} where

Wo 2 Wod”.
Compute gradient estimate:

g LY, £ (f(@xD;E),yD)

STEVENS INSTITUTE of TECHNOLOGY



Proposed Approach

Update parameters

To update Wy, project
gradients back to the
original space.

Other terms are
updated in a
standard way.
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Algorithm 1 Training of a Neural Network with Feature
Grouping as a Stochastic Regularizer

Require: Learning Rate n
Require: Initial Parameters for H layers

® £ {Wy,bo, Wy,by,--- ,Wg, by}

Ensure: Generate a bank of feature grouping matrices where
each is generated by randomly sampling  samples from the
training data set with replacement

P — {q)(l),q)(?),,., ,q,(m}
1: while stopping criteria not met do
: Sample a minibatch of m samples from the training set

{x® ... x(™1} with corresponding labels y(*)

Sample ® from the bank &.

Define = £ {Wo,bo,Wl,b1,~-- ,WH,bH} where

Wo £ Wod”.
5: Compute gradient estimate:

g LV=Y, £ (f(@x;=),y)
Apply updates:

Rl

° W() — WO - ngwo(b

e b« b;— 18b;
where 8b; 2 %Vbj Zz L (f(@x(z)’ E), y(Z))
forj € {0,---  H}

o W, W, —ngw,
forje{l,--- , H}

7: end while
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Experimental Results

Noisy Settings Small-sample Settings
Performance in terms of computation time Performance in terms of sample size
for Olivetti Faces for fMRI data
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Feature Grouping Feature Grouping
is computationally efficient and performs best as the sample size
robust to noise decreases

POSTER: Pacific Ballroom #121, 06/11, Tuesday STEVENS INSTITUTE of TECHNOLOGY



Thank You!
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