

Feature Grouping as a Stochastic Regularizer for High Dimensional Structured Data

Sergül Aydöre (Stevens Institute of Technology, USA)

Bertrand Thirion (INRIA, France)

Gaël Varoquaux (INRIA, France)

POSTER: Pacific Ballroom #121, 06/11, Tuesday

High Dimensional and Small-Sample Data Situations

1870

Brain imaging, Genomics, Seismology, Astronomy, Chemistry, etc.

PET acquisition process wikipedia

MRI Scanner and rs-fMRI time series acquisition [NVIDIA]

Seismology https://www.mapnagroup.com

A typical MEG equipment [BML2001]

Astronomy Astronomy Magazine, 2015

Integrative Genomics Viewer, 2012

Genomics

Fitting Complex Models in These Situations

1870

Challenges

- 1. Large feature dimension: due to rich temporal and spatial resolution
- 2. Noise in the data: due to artifacts unrelated to the effect of interest
- 3. Small sample size: due to logistics and cost of data acquisition

Regularization Strategies

- Early Stopping: [Yao, 2007]
- ℓ_1 and ℓ_2 penalties: [Tibshirami 1996]
- Pooling Layers in CNNs: [Hinton 2012]
- Group LASSO: [Yuan 2006]
- **Dropout**: [Srivastana 2014]

Fitting Complex Models in These Situations

1870

Challenges

- 1. Large feature dimension: due to rich temporal and spatial resolution
- 2. Noise in the data: due to artifacts unrelated to the effect of interest
- 3. Small sample size: due to logistics and cost of data acquisition

Regularization Strategies

- Early Stopping: [Yao, 2007]
- ℓ_1 and ℓ_2 penalties: [Tibshirami 1996]
- Pooling Layers in CNNs: [Hinton 2012]...... TRANSLATION INVARIANCE
- Group LASSO: [Yuan 2006]..... STRUCTURE + SPARSITY

POSTER: Pacific Ballroom #121, 06/11, Tuesday

Fitting Complex Models in These Situations

1870

Challenges

- 1. Large feature dimension: due to rich temporal and spatial resolution
- 2. Noise in the data: due to artifacts unrelated to the effect of interest
- 3. Small sample size: due to logistics and cost of data acquisition

Regularization Strategies

- Early Stopping: [Yao, 2007]
- ℓ_1 and ℓ_2 penalties: [Tibshirami 1996]
- Pooling Layers in CNNs: [Hinton 2012]...... TRANSLATION INVARIANCE
- Group LASSO: [Yuan 2006]...... STRUCTURE + SPARSITY
- Dropout: [Srivastana 2014]...... STOCHASTICITY
- PROPOSED: Use STRUCTURE & STOCHASTICITY

Feature Grouping to Capture Structure

1870

Algorithm

- ReNA: a data-driven, graph constrained feature grouping algorithm
- Each feature (pixel) is assigned to a cluster.
 Clusters are then recursively merged until the desired number of clusters remain.
- Benefits of ReNA: (i) a fast clustering algorithm
 (ii) leads to good signal approximations.

Consider fully connected neural network with *H* layers

Algorithm 1 Training of a Neural Network with Feature Grouping as a Stochastic Regularizer

Require: Learning Rate η

Require: Initial Parameters for H layers

$$\mathbf{\Theta} \triangleq \{\mathbf{W}_0, \mathbf{b}_0, \mathbf{W}_1, \mathbf{b}_1, \cdots, \mathbf{W}_H, \mathbf{b}_H\}$$

Ensure: Generate a bank of feature grouping matrices where each is generated by randomly sampling r samples from the training data set with replacement

$$\Phi = \left\{ \mathbf{\Phi}^{(1)}, \mathbf{\Phi}^{(2)}, \cdots, \mathbf{\Phi}^{(b)} \right\}$$

1: while stopping criteria not met do

- 2: Sample a minibatch of m samples from the training set $\{\mathbf{x}^{(1)}, \dots, \mathbf{x}^{(m)}\}$ with corresponding labels $y^{(i)}$
- 3: Sample Φ from the bank Φ .
- 4: Define $\mathbf{\Xi} \triangleq \left\{ \hat{\mathbf{W}}_0, \mathbf{b}_0, \mathbf{W}_1, \mathbf{b}_1, \cdots, \mathbf{W}_H, \mathbf{b}_H \right\}$ where $\hat{\mathbf{W}}_0 \triangleq \mathbf{W}_0 \mathbf{\Phi}^T$.
- 5: Compute gradient estimate:

$$\mathbf{g} \leftarrow \frac{1}{m} \nabla_{\mathbf{\Xi}} \sum_{i} \mathcal{L} \left(f(\mathbf{\Phi} \mathbf{x}^{(i)}; \mathbf{\Xi}), y^{(i)} \right)$$

- 6: Apply updates:
 - $\mathbf{W}_0 \leftarrow \mathbf{W}_0 \eta \mathbf{g}_{\mathbf{w}_0} \mathbf{\Phi}$ where $\mathbf{g}_{\mathbf{w}_0} \triangleq \frac{1}{m} \nabla_{\hat{\mathbf{W}}_0} \sum_i \mathcal{L}\left(f(\mathbf{\Phi} \mathbf{x}^{(i)}; \mathbf{\Xi}), y^{(i)}\right)$
 - $\mathbf{b}_{j} \leftarrow \mathbf{b}_{j} \eta \mathbf{g}_{b_{j}}$ where $\mathbf{g}_{b_{j}} \triangleq \frac{1}{m} \nabla_{\mathbf{b}_{j}} \sum_{i} \mathcal{L}\left(f(\mathbf{\Phi}\mathbf{x}^{(i)}; \mathbf{\Xi}), y^{(i)}\right)$ for $j \in \{0, \dots, H\}$
 - $\mathbf{W}_{j} \leftarrow \mathbf{W}_{j} \eta \mathbf{g}_{\mathbf{w}_{j}}$ where $\mathbf{g}_{\mathbf{w}_{j}} \triangleq \frac{1}{m} \nabla_{\mathbf{W}_{j}} \sum_{i} \mathcal{L}\left(f(\mathbf{\Phi}\mathbf{x}^{(i)}; \mathbf{\Xi}), y^{(i)}\right)$ for $j \in \{1, \dots, H\}$

Pre-compute a bank of feature grouping matrices

Algorithm 1 Training of a Neural Network with Feature Grouping as a Stochastic Regularizer

Require: Learning Rate η

Require: Initial Parameters for H layers

$$\mathbf{\Theta} \triangleq \{\mathbf{W}_0, \mathbf{b}_0, \mathbf{W}_1, \mathbf{b}_1, \cdots, \mathbf{W}_H, \mathbf{b}_H\}$$

Ensure: Generate a bank of feature grouping matrices where each is generated by randomly sampling *r* samples from the training data set with replacement

$$\Phi = \left\{ \mathbf{\Phi}^{(1)}, \mathbf{\Phi}^{(2)}, \cdots, \mathbf{\Phi}^{(b)} \right\}$$

1: while stopping criteria not met do

- 2: Sample a minibatch of m samples from the training set $\{\mathbf{x}^{(1)}, \dots, \mathbf{x}^{(m)}\}$ with corresponding labels $y^{(i)}$
- 3: Sample Φ from the bank Φ .
- 4: Define $\mathbf{\Xi} \triangleq \left\{ \hat{\mathbf{W}}_0, \mathbf{b}_0, \mathbf{W}_1, \mathbf{b}_1, \cdots, \mathbf{W}_H, \mathbf{b}_H \right\}$ where $\hat{\mathbf{W}}_0 \triangleq \mathbf{W}_0 \mathbf{\Phi}^T$.
- : Compute gradient estimate:

$$\mathbf{g} \leftarrow \frac{1}{m} \nabla_{\mathbf{\Xi}} \sum_{i} \mathcal{L} \left(f(\mathbf{\Phi} \mathbf{x}^{(i)}; \mathbf{\Xi}), y^{(i)} \right)$$

- 6: Apply updates:
 - $\mathbf{W}_0 \leftarrow \mathbf{W}_0 \eta \mathbf{g}_{\mathbf{w}_0} \mathbf{\Phi}$ where $\mathbf{g}_{\mathbf{w}_0} \triangleq \frac{1}{m} \nabla_{\hat{\mathbf{W}}_0} \sum_{i} \mathcal{L}\left(f(\mathbf{\Phi}\mathbf{x}^{(i)}; \mathbf{\Xi}), y^{(i)}\right)$
 - $\mathbf{b}_{j} \leftarrow \mathbf{b}_{j} \eta \mathbf{g}_{b_{j}}$ where $\mathbf{g}_{b_{j}} \triangleq \frac{1}{m} \nabla_{\mathbf{b}_{j}} \sum_{i} \mathcal{L}\left(f(\mathbf{\Phi}\mathbf{x}^{(i)}; \mathbf{\Xi}), y^{(i)}\right)$ for $j \in \{0, \dots, H\}$
 - $\mathbf{W}_{j} \leftarrow \mathbf{W}_{j} \eta \mathbf{g}_{\mathbf{w}_{j}}$ where $\mathbf{g}_{\mathbf{w}_{j}} \triangleq \frac{1}{m} \nabla_{\mathbf{W}_{j}} \sum_{i} \mathcal{L}\left(f(\mathbf{\Phi}\mathbf{x}^{(i)}; \mathbf{\Xi}), y^{(i)}\right)$ for $j \in \{1, \dots, H\}$

Sample from the training set

Algorithm 1 Training of a Neural Network with Feature Grouping as a Stochastic Regularizer

Require: Learning Rate η

Require: Initial Parameters for H layers

$$\mathbf{\Theta} \triangleq \{\mathbf{W}_0, \mathbf{b}_0, \mathbf{W}_1, \mathbf{b}_1, \cdots, \mathbf{W}_H, \mathbf{b}_H\}$$

Ensure: Generate a bank of feature grouping matrices where each is generated by randomly sampling r samples from the training data set with replacement

$$\Phi = \left\{ \mathbf{\Phi}^{(1)}, \mathbf{\Phi}^{(2)}, \cdots, \mathbf{\Phi}^{(b)} \right\}$$

1: while stopping criteria not met do

- 2: Sample a minibatch of m samples from the training set $\{\mathbf{x}^{(1)}, \dots, \mathbf{x}^{(m)}\}$ with corresponding labels $y^{(i)}$
- 3: Sample Φ from the bank Φ .
- 4: Define $\mathbf{\Xi} \triangleq \left\{ \hat{\mathbf{W}}_0, \mathbf{b}_0, \mathbf{W}_1, \mathbf{b}_1, \cdots, \mathbf{W}_H, \mathbf{b}_H \right\}$ where $\hat{\mathbf{W}}_0 \triangleq \mathbf{W}_0 \mathbf{\Phi}^T$.
- 5: Compute gradient estimate:

$$\mathbf{g} \leftarrow \frac{1}{m} \nabla_{\mathbf{\Xi}} \sum_{i} \mathcal{L} \left(f(\mathbf{\Phi} \mathbf{x}^{(i)}; \mathbf{\Xi}), y^{(i)} \right)$$

- 6: Apply updates:
 - $\mathbf{W}_0 \leftarrow \mathbf{W}_0 \eta \mathbf{g}_{\mathbf{w}_0} \mathbf{\Phi}$ where $\mathbf{g}_{\mathbf{w}_0} \triangleq \frac{1}{m} \nabla_{\hat{\mathbf{W}}_0} \sum_{i} \mathcal{L}\left(f(\mathbf{\Phi}\mathbf{x}^{(i)}; \mathbf{\Xi}), y^{(i)}\right)$
 - $\mathbf{b}_{j} \leftarrow \mathbf{b}_{j} \eta \mathbf{g}_{b_{j}}$ where $\mathbf{g}_{b_{j}} \triangleq \frac{1}{m} \nabla_{\mathbf{b}_{j}} \sum_{i} \mathcal{L}\left(f(\mathbf{\Phi}\mathbf{x}^{(i)}; \mathbf{\Xi}), y^{(i)}\right)$ for $j \in \{0, \dots, H\}$
 - $\mathbf{W}_{j} \leftarrow \mathbf{W}_{j} \eta \mathbf{g}_{\mathbf{w}_{j}}$ where $\mathbf{g}_{\mathbf{w}_{j}} \triangleq \frac{1}{m} \nabla_{\mathbf{W}_{j}} \sum_{i} \mathcal{L}\left(f(\mathbf{\Phi}\mathbf{x}^{(i)}; \mathbf{\Xi}), y^{(i)}\right)$ for $j \in \{1, \dots, H\}$

Sample Φ from the bank of feature grouping matrices

Algorithm 1 Training of a Neural Network with Feature Grouping as a Stochastic Regularizer

Require: Learning Rate η

Require: Initial Parameters for H layers

$$\mathbf{\Theta} \triangleq \{\mathbf{W}_0, \mathbf{b}_0, \mathbf{W}_1, \mathbf{b}_1, \cdots, \mathbf{W}_H, \mathbf{b}_H\}$$

Ensure: Generate a bank of feature grouping matrices where each is generated by randomly sampling r samples from the training data set with replacement

$$\Phi = \left\{ \mathbf{\Phi}^{(1)}, \mathbf{\Phi}^{(2)}, \cdots, \mathbf{\Phi}^{(b)} \right\}$$

1: while stopping criteria not met do

- 2: Sample a minibatch of m samples from the training set $\{\mathbf{x}^{(1)}, \dots, \mathbf{x}^{(m)}\}$ with corresponding labels $y^{(i)}$
- 3: Sample Φ from the bank Φ .

4: Define
$$\mathbf{\Xi} \triangleq \left\{ \hat{\mathbf{W}}_0, \mathbf{b}_0, \mathbf{W}_1, \mathbf{b}_1, \cdots, \mathbf{W}_H, \mathbf{b}_H \right\}$$
 where $\hat{\mathbf{W}}_0 \triangleq \mathbf{W}_0 \mathbf{\Phi}^T$.

5: Compute gradient estimate:

$$\mathbf{g} \leftarrow \frac{1}{m} \nabla_{\mathbf{\Xi}} \sum_{i} \mathcal{L} \left(f(\mathbf{\Phi} \mathbf{x}^{(i)}; \mathbf{\Xi}), y^{(i)} \right)$$

6: Apply updates:

•
$$\mathbf{W}_0 \leftarrow \mathbf{W}_0 - \eta \mathbf{g}_{\mathbf{w}_0} \mathbf{\Phi}$$

where $\mathbf{g}_{\mathbf{w}_0} \triangleq \frac{1}{m} \nabla_{\hat{\mathbf{W}}_0} \sum_i \mathcal{L}\left(f(\mathbf{\Phi}\mathbf{x}^{(i)}; \mathbf{\Xi}), y^{(i)}\right)$

•
$$\mathbf{b}_{j} \leftarrow \mathbf{b}_{j} - \eta \mathbf{g}_{b_{j}}$$

where $\mathbf{g}_{b_{j}} \triangleq \frac{1}{m} \nabla_{\mathbf{b}_{j}} \sum_{i} \mathcal{L}\left(f(\mathbf{\Phi}\mathbf{x}^{(i)}; \mathbf{\Xi}), y^{(i)}\right)$
for $j \in \{0, \cdots, H\}$

•
$$\mathbf{W}_{j} \leftarrow \mathbf{W}_{j} - \eta \mathbf{g}_{\mathbf{w}_{j}}$$

where $\mathbf{g}_{\mathbf{w}_{j}} \triangleq \frac{1}{m} \nabla_{\mathbf{W}_{j}} \sum_{i} \mathcal{L}\left(f(\mathbf{\Phi}\mathbf{x}^{(i)}; \mathbf{\Xi}), y^{(i)}\right)$
for $j \in \{1, \dots, H\}$

7: end while

picked matrix Φ

Re-define parameter space and project input onto lower dimensional space

Algorithm 1 Training of a Neural Network with Feature Grouping as a Stochastic Regularizer

Require: Learning Rate η

Require: Initial Parameters for H layers

$$\mathbf{\Theta} \triangleq \{\mathbf{W}_0, \mathbf{b}_0, \mathbf{W}_1, \mathbf{b}_1, \cdots, \mathbf{W}_H, \mathbf{b}_H\}$$

Ensure: Generate a bank of feature grouping matrices where each is generated by randomly sampling r samples from the training data set with replacement

$$\Phi = \left\{ \mathbf{\Phi}^{(1)}, \mathbf{\Phi}^{(2)}, \cdots, \mathbf{\Phi}^{(b)}
ight\}$$

1: while stopping criteria not met do

- 2: Sample a minibatch of m samples from the training set $\{\mathbf{x}^{(1)}, \dots, \mathbf{x}^{(m)}\}$ with corresponding labels $y^{(i)}$
- 3: Sample Φ from the bank Φ .
- 4: Define $\mathbf{\Xi} \triangleq \left\{ \mathbf{\hat{W}}_0, \mathbf{b}_0, \mathbf{W}_1, \mathbf{b}_1, \cdots, \mathbf{W}_H, \mathbf{b}_H \right\}$ where $\mathbf{\hat{W}}_0 \triangleq \mathbf{W}_0 \mathbf{\Phi}^T$.

5: Compute gradient estimate:

$$\mathbf{g} \leftarrow \frac{1}{m} \nabla_{\mathbf{\Xi}} \sum_{i} \mathcal{L} \left(f(\mathbf{\Phi} \mathbf{x}^{(i)}; \mathbf{\Xi}), y^{(i)} \right)$$

6: Apply updates:

•
$$\mathbf{W}_0 \leftarrow \mathbf{W}_0 - \eta \mathbf{g}_{\mathbf{w}_0} \mathbf{\Phi}$$

where $\mathbf{g}_{\mathbf{w}_0} \triangleq \frac{1}{m} \nabla_{\hat{\mathbf{W}}_0} \sum_i \mathcal{L}\left(f(\mathbf{\Phi}\mathbf{x}^{(i)}; \mathbf{\Xi}), y^{(i)}\right)$

•
$$\mathbf{b}_{j} \leftarrow \mathbf{b}_{j} - \eta \mathbf{g}_{b_{j}}$$

where $\mathbf{g}_{b_{j}} \triangleq \frac{1}{m} \nabla_{\mathbf{b}_{j}} \sum_{i} \mathcal{L}\left(f(\mathbf{\Phi}\mathbf{x}^{(i)}; \mathbf{\Xi}), y^{(i)}\right)$
for $j \in \{0, \dots, H\}$

•
$$\mathbf{W}_{j} \leftarrow \mathbf{W}_{j} - \eta \mathbf{g}_{\mathbf{w}_{j}}$$

where $\mathbf{g}_{\mathbf{w}_{j}} \triangleq \frac{1}{m} \nabla_{\mathbf{W}_{j}} \sum_{i} \mathcal{L}\left(f(\mathbf{\Phi}\mathbf{x}^{(i)}; \mathbf{\Xi}), y^{(i)}\right)$
for $j \in \{1, \dots, H\}$

Apply back propagation

Algorithm 1 Training of a Neural Network with Feature Grouping as a Stochastic Regularizer

Require: Learning Rate η

Require: Initial Parameters for H layers

$$\mathbf{\Theta} \triangleq \{\mathbf{W}_0, \mathbf{b}_0, \mathbf{W}_1, \mathbf{b}_1, \cdots, \mathbf{W}_H, \mathbf{b}_H\}$$

Ensure: Generate a bank of feature grouping matrices where each is generated by randomly sampling r samples from the training data set with replacement

$$\Phi = \left\{ \mathbf{\Phi}^{(1)}, \mathbf{\Phi}^{(2)}, \cdots, \mathbf{\Phi}^{(b)}
ight\}$$

1: while stopping criteria not met do

- 2: Sample a minibatch of m samples from the training set $\{\mathbf{x}^{(1)}, \dots, \mathbf{x}^{(m)}\}$ with corresponding labels $y^{(i)}$
- 3: Sample Φ from the bank Φ .
- 4: Define $\mathbf{\Xi} \triangleq \left\{ \hat{\mathbf{W}}_0, \mathbf{b}_0, \mathbf{W}_1, \mathbf{b}_1, \cdots, \mathbf{W}_H, \mathbf{b}_H \right\}$ where $\hat{\mathbf{W}}_0 \triangleq \mathbf{W}_0 \mathbf{\Phi}^T$.
- 5: Compute gradient estimate:

$$\mathbf{g} \leftarrow \frac{1}{m} \nabla_{\mathbf{\Xi}} \sum_{i} \mathcal{L}\left(f(\mathbf{\Phi}\mathbf{x}^{(i)}; \mathbf{\Xi}), y^{(i)}\right)$$

6: Apply updates:

•
$$\mathbf{W}_0 \leftarrow \mathbf{W}_0 - \eta \mathbf{g}_{\mathbf{w}_0} \mathbf{\Phi}$$

where $\mathbf{g}_{\mathbf{w}_0} \triangleq \frac{1}{m} \nabla_{\hat{\mathbf{W}}_0} \sum_i \mathcal{L}\left(f(\mathbf{\Phi}\mathbf{x}^{(i)}; \mathbf{\Xi}), y^{(i)}\right)$

•
$$\mathbf{b}_{j} \leftarrow \mathbf{b}_{j} - \eta \mathbf{g}_{b_{j}}$$

where $\mathbf{g}_{b_{j}} \triangleq \frac{1}{m} \nabla_{\mathbf{b}_{j}} \sum_{i} \mathcal{L}\left(f(\mathbf{\Phi}\mathbf{x}^{(i)}; \mathbf{\Xi}), y^{(i)}\right)$
for $j \in \{0, \cdots, H\}$

•
$$\mathbf{W}_{j} \leftarrow \mathbf{W}_{j} - \eta \mathbf{g}_{\mathbf{w}_{j}}$$

where $\mathbf{g}_{\mathbf{w}_{j}} \triangleq \frac{1}{m} \nabla_{\mathbf{W}_{j}} \sum_{i} \mathcal{L}\left(f(\mathbf{\Phi}\mathbf{x}^{(i)}; \mathbf{\Xi}), y^{(i)}\right)$
for $j \in \{1, \dots, H\}$

Update parameters

To update W_0 , project gradients back to the original space.

Other terms are updated in a standard way.

Algorithm 1 Training of a Neural Network with Feature Grouping as a Stochastic Regularizer

Require: Learning Rate η

Require: Initial Parameters for H layers

$$\mathbf{\Theta} \triangleq \{\mathbf{W}_0, \mathbf{b}_0, \mathbf{W}_1, \mathbf{b}_1, \cdots, \mathbf{W}_H, \mathbf{b}_H\}$$

Ensure: Generate a bank of feature grouping matrices where each is generated by randomly sampling r samples from the training data set with replacement

$$\Phi = \left\{ \mathbf{\Phi}^{(1)}, \mathbf{\Phi}^{(2)}, \cdots, \mathbf{\Phi}^{(b)}
ight\}$$

1: while stopping criteria not met do

- 2: Sample a minibatch of m samples from the training set $\{\mathbf{x}^{(1)}, \dots, \mathbf{x}^{(m)}\}$ with corresponding labels $y^{(i)}$
- 3: Sample Φ from the bank Φ .
- 4: Define $\mathbf{\Xi} \triangleq \left\{ \hat{\mathbf{W}}_0, \mathbf{b}_0, \mathbf{W}_1, \mathbf{b}_1, \cdots, \mathbf{W}_H, \mathbf{b}_H \right\}$ where $\hat{\mathbf{W}}_0 \triangleq \mathbf{W}_0 \mathbf{\Phi}^T$.
- 5: Compute gradient estimate:

$$\mathbf{g} \leftarrow \frac{1}{m} \nabla_{\mathbf{\Xi}} \sum_{i} \mathcal{L} \left(f(\mathbf{\Phi} \mathbf{x}^{(i)}; \mathbf{\Xi}), y^{(i)} \right)$$

: Apply updates:

$$\mathbf{Y} \bullet \mathbf{W}_0 \leftarrow \mathbf{W}_0 - \eta \mathbf{g}_{\mathbf{w}_0} \mathbf{\Phi}$$
where $\mathbf{g}_{\mathbf{w}_0} \triangleq \frac{1}{m} \nabla_{\hat{\mathbf{W}}_0} \sum_i \mathcal{L}\left(f(\mathbf{\Phi} \mathbf{x}^{(i)}; \mathbf{\Xi}), y^{(i)}\right)$

$$\mathbf{b}_{j} \leftarrow \mathbf{b}_{j} - \eta \mathbf{g}_{b_{j}}$$
where $\mathbf{g}_{b_{j}} \triangleq \frac{1}{m} \nabla_{\mathbf{b}_{j}} \sum_{i} \mathcal{L}\left(f(\mathbf{\Phi}\mathbf{x}^{(i)}; \mathbf{\Xi}), y^{(i)}\right)$
for $j \in \{0, \cdots, H\}$

$$\mathbf{W}_{j} \leftarrow \mathbf{W}_{j} - \eta \mathbf{g}_{\mathbf{w}_{j}}$$
where $\mathbf{g}_{\mathbf{w}_{j}} \triangleq \frac{1}{m} \nabla_{\mathbf{W}_{j}} \sum_{i} \mathcal{L}\left(f(\mathbf{\Phi}\mathbf{x}^{(i)}; \mathbf{\Xi}), y^{(i)}\right)$
for $j \in \{1, \cdots, H\}$

Experimental Results

1870

Noisy Settings

Small-sample Settings

Thank You!

Visit our POSTER TODAY at Pacific Ballroom #121!