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Motivations: towards a Theory of Deep Learning

Theoretical: deeper insight into Why Deep Learning Works?
@ convex versus non-convex optimization?
@ explicit/implicit regularization?
@ is / why is / when is deep better?
@ VC theory versus Statistical Mechanics theory?

Practical: use insights to improve engineering of DNNs?
@ when is a network fully optimized?

@ can we use labels and/or domain knowledge more efficiently?

large batch versus small batch in optimization?

designing better ensembles?
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How we will study regularization
The Energy Landscape is determined by layer weight matrices W :
Epnn = he(Wp x h 1 (W1 x hp_o(---) +br1) +by)

Traditional regularization is applied to Wy:
Wig L (Z Epnn(di) — )/i> +ay [|w
1501 i /

Different types of regularization, e.g., different norms || - ||, leave different

empirical signatures on W,

What we do:

@ Turn off “all” regularization.

@ Systematically turn it back on, explicitly with « or implicitly with
knobs/switches.

@ Study empirical properties of W/.
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ESD: detailed insight into W/,

Empirical Spectral Density (ESD: eigenvalues of X = W/ W)
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Entropy decrease corresponds to:

e modification (later, breakdown) of random structure and

@ onset of a new kind of self-regularization.
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Random Matrix Theory 101: Wigner and Tracy-Widom

@ Wigner: global bulk statistics approach universal semi-circular form

@ Tracy-Widom: local edge statistics fluctuate in universal way
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Problems with Wigner and Tracy-Widom:
@ Weight matrices usually not square

@ Typically do only a single training run
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Random Matrix Theory 102": Marchenko-Pastur

Marchenko Pastur distributions p(A) Marchenko Pastur distributions p(A)
\ __ Q=40%=
1.0 4 ‘\ Q=40°=15
— Q=40°=1
0.8 3 ‘\ —— Q=402=05
$06 = |
] 32 \
0.4 ‘
0.2 L
0.0 0 I
0 1 2 3 4 0 1 2 3 4 5
AEM~,AT] AER~,AT]
(a) Vary aspect ratios (b) Vary variance parameters

Figure: Marchenko-Pastur (MP) distributions.
Important points:
@ Global bulk stats: The overall shape is deterministic, fixed by Q and o.

@ Local edge stats: The edge A™ is very crisp, i.e.,
Ay = [Amax — AT ~ O(M~2/3), plus Tracy-Widom fluctuations.

We use both global bulk statistics as well as local edge statistics in our theory.
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Random Matrix Theory 103: Heavy-tailed RMT

Go beyond the (relatively easy) Gaussian Universality class:

@ model strongly-correlated systems (“signal”) with heavy-tailed random matrices.

Generative Model Finite-N Limiting Bulk edge (far) Tail
w/ elements from Global shape Global shape Local stats Local stats
Universality class pPn(N) p(N), N = oo N A R Amax
Basic MP Gaussian . MP . MP T™W No tail.
distribution
Spiked- Gaussian, MP +
pk + low-rank Gaussian MP T™W Gaussian
Covariance X X
perturbations spikes
Heavy tail, (Weakly) MP + Lk Lk
4<p Heavy-Tailed PL tail MP Heavy-Tailed Heavy-Tailed
. Moderately) P PL
Heavy tail ( N PL
j Heavy-Tailed —(ap+b) (L. No edge. Frechet
2< <4 (or “fat tailed”) ~ A ~ A (gutt)
+F
Heavy tail, (Very) PL PL
0< <2 Heavy-Tailed oA Gern | =Gty No edge. Frechet

Basic MP theory, and the spiked and Heavy-Tailed extensions we use, including known, empirically-observed, and conjectured

relations between them. Boxes marked “*" are best described as following “TW with large finite size corrections” that are likely

Heavy-Tailed, leading to bulk edge statistics and far tail statistics that are indistinguishable. Boxes marked “**" are

phenomenological fits, describing large (2 < p < 4) or small (0 < u < 2) finite-size corrections on N — oo behavior.



Phenomenological Theory: 5+1 Phases of Training
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Figure: The 5+1 phases of learning we identified in DNN training.
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Old/Small Models: Bulk+Spike ~ Tikhonov regularization

LeNet5: pemp(A) and MP fit
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Smaller, older models like LeNet5 exhibit traditional regularization
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New/Large Models: Heavy-tailed Self-regularization

W is strongly-correlated and highly non-random

@ Can model strongly-correlated systems by heavy-tailed random matrices

Then RMT/MP ESD will also have heavy tails

Known results from RMT / polymer theory (Bouchaud, Potters, etc.)

ESD p(A) for AlexNet, FC2, zoomed in

AlexNet
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Inception V3
fo DenseNet201

1 H R
Eigenvalues (1) of X = Wi Wiy

Larger, modern DNNs exhibit novel Heavy-tailed self-regularization
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Uses, implications, and extensions

@ Exhibit all phases of training by varying just the batch size (“explaining” the
generalization gap)

@ A Very Simple Deep Learning (VSDL) model (with load-like parameters «,
& temperature-like parameters 7) that exhibits a non-trivial phase diagram

@ Connections with minimizing frustration, energy landscape theory, and the
spin glass of minimal frustration

@ A “rugged convexity” since local minima do not concentrate near the ground
state of heavy-tailed spin glasses

@ A novel capacity control metric (the weighted sum of power law exponents)
to predict trends in generalization performance for state-of-the-art models

Use our tool:

@ “pip install weightwatcher”

Stop by the poster for more details ...
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