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The implicit bias of stochastic gradient descent

» Compared with gradient descent (GD), stochastic gradient
descent (SGD) tends to generalize better.

» This is attributed to the noise in SGD.

> In this work we study the anisotropic structure of SGD
noise and its importance for escaping and regularization.



Stochastic gradient descent and its variants

Loss function L(6) := NZ 1 U(xi; 0).
Gradient Langevin dynamic (GLD)
Or11 = 0r —nVolL(0:) + nee, €r ~ N (0,0%/) )
Stochastic gradient descent (SGD)
Ocr1 = 0: —1E(0:), &(0:) = 7 Yxep, Vollx: Or).
The structure of SGD noise
g(00) ~ N (VL(8), T%(61)) , T559(60,) ~
L[5 I Vi 09 4(x: )T = VL(0)TL©)T] .

SGD reformulation
Orr1 = 0c — NV L(0:) + ner, e ~ N (0, ngd(et)) :



GD with unbiased noise

Orr1 = 0: —nVoL(0:) + €, € ~N(0,X¢). (1)

Iteration (1) could be viewed as a discretization of the following
continuous stochastic differential equation (SDE):

dgt - —ng(Ht) dt + V thWt. (2)

Next we study the role of noise structure X ; by analyzing the
continous SDE (2).



Escaping efficiency

Definition (Escaping efficiency)
Suppose the SDE (2) is initialized at minimum 6y, then for a fixed

time t small enough, the escaping efficiency is defined as the
increase of loss potential:

Eo,[L(0:) — L(60)] (3)

Under suitable approximations, we could compute the escaping
efficiency for SDE (2),

E[L(0:) — L(60)] = — /OtE [VLTVL} n /Ot %ETr(HtZt) dt (4)
~ %Tr <(I - e_2Ht> Z) ~ éTr(HZ). (5)

Thus Tr (HX)serves as an important indicator for measuring the
escaping behavior of noises with different structures.



Factors affecting the escaping behavior

The noise scale For Gaussian noise e; ~ A (0,X;), we can measure
its scale by [|et||yyace = Elef €] = -+ = Tr(X¢). Thus
based on Tr(HX), we see that the larger noise scale
is, the faster the escaping happens.

To eliminate the impact of noise scale, assume that

given time t, Tr(X;) is constant. (6)

The ill-conditioning of minima For the minima with Hessian as
scalar matrix Hy = A/, the noises in same magnitude
make no difference since Tr(H;X;) = ATr¥,.

The structure of noise For the ill-conditioned minima, the
structure of noise plays an important role on the
escaping!



The impact of noise structure

Proposition
Let Hpxp and Xpxp be semi-positive definite. If

1. His ill-conditioned. Let A1, \>...\p be the eigenvalues of H in
descent order, and for some constant k < D and d > % the
eigenvalues satisfy

A >0, Mt Mgz, -5 Ap < D795 (7)

2. X is “aligned” with H. Let u; be the corresponding unit
eigenvector of eigenvalue \;, for some projection coefficient a > 0,

we have .
T r
Uy Xup > aki—-. 8
TS > ah i ®)
Then for such anisotropic ¥ and its isotropic equivalence ¥ = %ZI under
constraint (6), we have the follow ratio describing their difference in term

of escaping efficiency,

Tr(HY) _ (a0 D), d>
THHE)

(9)

N =



Analyze the noise of SGD via Proposition 1

By Proposition 1, The anisotropic noises satisfying the two
conditions indeed help escape from the ill-conditioned minima.
Thus to see the importance of SGD noise, we only need to show it
meets the two conditions.

» Condition 1 is naturally hold for neural networks, thanks to
their over-parameterization!

> See the following Proposition 2 for the second condition.



SGD noise and Hessian

Proposition
Consider a binary classification problem with data {(x;, vi)}icr,y € {0,1},

and mean square loss, L(0) = E(x,)||¢ o f(x;0) — yH2 , where f denotes
the network and ¢ is a threshold activation function,

o(f) = min{max{f,d},1 — 6}, (10)
0 is a small positive constant.
Suppose the network f satisfies:
1. it has one hidden layer and piece-wise linear activation;
2. the parameters of its output layer are fixed during training.
Then there is a constant a > 0, for 0 close enough to minima 6%,

Tre(0)
TrH(0)

u(0)TZ(0)u(8) > aX(h) (11)

holds almost everywhere, for A\(0) and u(6) being the maximal eigenvalue
and its corresponding eigenvector of Hessian H(6).



Examples of different noise structures

Table: Compared dynamics defined in Eq. (1).

Dynamics | Noise € Remarks

SGD et ~ N (0 ngd) Zigd is the gradient covariance matrix.

GLD et ~ N (0 g ) ot is a tunable constant.

constant

GLD dy- | e NN(O,U,%I) ot is adjusted to force the noise share

namic the same magnitude with SGD noise,
similarly hereinafter.

GLD di- | et ~ N (0 diag(X38) ) diag(X38Y) is the diagonal of the covari-

agonal ance of SGD noise Zigd.

GLD € ~ (0,0 ) S is the best low rank approximation

leading of Zigd.

GLD €r ~ (0, th) H, is the best low rank approximation

Hessian of the Hessian.

GLD 1st | ¢t ~ N (0 ot)\lulu1> A1, U1 are the maximal eigenvalue and

eigven(H) its corresponding unit eigenvector of the
Hessian.




2-D toy example
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Figure: 2-D toy example. Compared dynamics are initialized at the sharp
minima. Left: The trajectory of each compared dynamics for escaping
from the sharp minimum in one run. Right: Success rate of arriving the
flat solution in 100 repeated runs



One hidden layer network
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Figure: One hidden layer neural networks. The solid and the dotted lines
represent the value of Tr(HX) and Tr(HXY), respectively. The number of
hidden nodes varies in {32,128,512}.



FashionMNIST experiments
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Figure: FashionMNIST experiments. Left: The first 400 eigenvalues of

Hessian at 0%, the sharp minima found by GD after 3000 iterations.

.
Middle: The projection coefficient estimation 4 = % i
11r

Proposition 1. Right: Tr(H,X;) versus Tr(H;X;) during SGD

optimization initialized from 0¢, Y= T?):f/ denotes the isotropic

equivalence of SGD noise.




FashionMNIST experiments
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Figure: FashionMNIST experiments. Compared dynamics are initialized
at 0% found by GD, marked by the vertical dashed line in iteration 3000.
Left: Test accuracy versus iteration. Right: Expected sharpness versus
iteration. Expected sharpness (the higher the sharper) is measured as

E, 0,621y [L(0 4+ v)] — L(), and 6 = 0.01, the expectation is computed
by average on 1000 times sampling.



Conclusion

> We explore the escaping behavior of SGD-like processes
through analyzing their continuous approximation.

» We show that thanks to the anisotropic noise, SGD could
escape from sharp minima efficiently, which leads to implicit
regularization effects.

» Our work raises concerns over studying the structure of SGD
noise and its effect.

» Experiments support our understanding.
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