Estimating Information Flow in Deep Neural

Networks

Ziv Goldfeld, Ewout van den Berg, Kristjan Greenewald, Igor Melnyk,
Nam Nguyen, Brian Kingsbury and Yury Polyanskiy

MIT, IBM Research, MIT-IBM Watson Al Lab

International Conference on Machine Learning

June 12th, 2019

(O
©
o
[©)
I
(]
=
e}
-
QU
©
<
>
!s
P}
(1]
2
1
(=T
=
c
-
(1]
(]
-
o
(]
[}
o

2/11

Deep Learning - What’s Under the Hood?

o Lacking Theory: Macroscopic understanding of Deep Learning

2/11

Deep Learning - What’s Under the Hood?

o Lacking Theory: Macroscopic understanding of Deep Learning

@ What drives the evolution of internal representations?

2/11

Deep Learning - What’s Under the Hood?

o Lacking Theory: Macroscopic understanding of Deep Learning

@ What drives the evolution of internal representations?

@ What are properties of learned representations?

2/11

Deep Learning - What’s Under the Hood?

o Lacking Theory: Macroscopic understanding of Deep Learning

@ What drives the evolution of internal representations?
@ What are properties of learned representations?

0 How do fully trained networks process information?

2/11

Deep Learning - What’s Under the Hood?

o Lacking Theory: Macroscopic understanding of Deep Learning

@ What drives the evolution of internal representations?
@ What are properties of learned representations?

e How do fully trained networks process information?

9o Attempts to Understand Effectiveness of DL:

P Structure of loss landscape
[Saxe et al.'14, Choromanska et al.'15, Kawaguchi'16, Keskar et al.'17]

> Wavelets and sparse coding
[Bruna-Mallat'13, Giryes et al."16, Papyan et al.’16]

> Adversarial examples
[Szegedy et al.'14, Nguyen et al.’17, Liu et al."16, Cisse et al.’16]

> Information Bottleneck Theory
[Tishby-Zaslavsky'15, Shwartz-Tishby'17, Saxe et al.'18, Gabrié et al.’18]

2/11

Deep Learning - What’s Under the Hood?

o Lacking Theory: Macroscopic understanding of Deep Learning

@ What drives the evolution of internal representations?
@ What are properties of learned representations?

e How do fully trained networks process information?

9o Attempts to Understand Effectiveness of DL:

P Structure of loss landscape
[Saxe et al.'14, Choromanska et al.'15, Kawaguchi'16, Keskar et al.'17]

> Wavelets and sparse coding
[Bruna-Mallat'13, Giryes et al."16, Papyan et al.’16]

> Adversarial examples
[Szegedy et al.'14, Nguyen et al.’17, Liu et al."16, Cisse et al.’16]

> Information Bottleneck Theory
[Tishby-Zaslavsky'15, Shwartz-Tishby'17, Saxe et al.'18, Gabrié et al.’18]

2/11

Deep Learning - What’s Under the Hood?

o Lacking Theory: Macroscopic understanding of Deep Learning

@ What drives the evolution of internal representations?
@ What are properties of learned representations?

e How do fully trained networks process information?

9o Attempts to Understand Effectiveness of DL:

P Structure of loss landscape
[Saxe et al.'14, Choromanska et al.'15, Kawaguchi'16, Keskar et al.'17]

> Wavelets and sparse coding
[Bruna-Mallat'13, Giryes et al."16, Papyan et al.’16]

> Adversarial examples
[Szegedy et al.'14, Nguyen et al.’17, Liu et al."16, Cisse et al.’16]

> Information Bottleneck Theory
[Tishby-Zaslavsky'15, Shwartz-Tishby'17, Saxe et al.'18, Gabrié et al.’18]

* Goal: Mathematically analyze IB theory & test ‘Compression’ o

Setup and Preliminaries

(Deterministic) Feedforward DNN: Each layer Ty = fy(Ty—1)

Y X Ty =X T, T, T,
(Label) (Feature/lmage) (InputLayer) (Hidden Layer 1) (Hidden Layer2) (Hidden Layer 3)

T,=Y
' (Output Layer)
“’ Ve .
X7
D

3/11

Setup and Preliminaries

(Deterministic) Feedforward DNN: Each layer Ty = fy(Ty—1)

Y X Ty =X T, T, T,
(Label) (Feature/lmage) (InputLayer) (Hidden Layer 1) (Hidden Layer2) (Hidden Layer 3)

. T,=7

¢ (Output Layer)
Cat “() .\
SO0
- 00

o Joint Distribution: Py y

3/11

Setup and Preliminaries

(Deterministic) Feedforward DNN: Each layer Ty = fy(Ty—1)

Y X Ty =X T, T, T,
(Label) (Feature/lmage) (InputLayer) (Hidden Layer 1) (Hidden Layer2) (Hidden Layer 3)

. T,=7

¢ (Output Layer)
Cat “() .\
SO0
- 00

o Joint Distribution: Pxy = Pxy-Pp .7 x

3/11

Setup and Preliminaries

(Deterministic) Feedforward DNN: Each layer Ty = fy(Ty—1)

Y X To=X T, T, T,
(Label) (Feature/lmage) (InputLayer) (Hidden Layer 1) (Hidden Layer2) (Hidden Layer 3)

;] =7

. (Output Layer)
KSELT
Ve,
Y

Cat
o =)
S

Dog .

o Joint Distribution: Pxy = Pxy Pp 7 x

o Information Plane: Evolution of (I(X;7}),1(Y;Ty)) during training

I(A; B) = Dy (Pa,gl|Pa @ Pg) "= ¥, , Pa,p(a,b) log %%}

3/11

Setup and Preliminaries

(Deterministic) Feedforward DNN: Each layer Ty = fy(Ty—1)

Y X Ty =X T, T, T,
(Label) (Feature/lmage) (InputLayer) (Hidden Layer 1) (Hidden Layer2) (Hidden Layer 3)

. T,=7

¢ (Output Layer)
Cat “() .\
SO0
- 00

IB Theory Claim: Training comprises 2 phases

4/11

Setup and Preliminaries

(Deterministic) Feedforward DNN: Each layer Ty = fy(Ty—1)

Y X To=X T, T, T,
(Label) (Feature/lmage) (InputLayer) (Hidden Layer 1) (Hidden Layer2) (Hidden Layer 3)

. T,=7

¢ . (Output Layer)
KK
e,

Cat
e 4 @
Y
Dog . ®

IB Theory Claim: Training comprises 2 phases

Q Fitting: I(Y;Ty) & I(X;T}) rise (short)

4/11

Setup and Preliminaries

(Deterministic) Feedforward DNN: Each layer Ty = fy(Ty—1)

Y X To=X T, T, T,
(Label) (Feature/lmage) (InputLayer) (Hidden Layer 1) (Hidden Layer2) (Hidden Layer 3)

;] =7

(Output Layer)
O
9
Dog

IB Theory Claim: Training comprises 2 phases

Q Fitting: I(Y; 1) & I(X;Ty) rise (short)

Q Compression: (X;T}) slowly drops (long)

4/11

Setup and Preliminaries

(Deterministic) Feedforward DNN: Each layer Ty = fy(Ty—1)

Y X To=X T, T, T,
(Label) (Feature/lmage) (InputLayer) (Hidden Layer 1) (Hidden Layer2) (Hidden Layer 3)

;] =7

(Output Layer)
Cat “(); ‘\
Dog

IB Theory Claim: Training comprises 2 phases

Q Fitting: I(Y; 1) & I(X;Ty) rise (short)

Q Compression: (X;T}) slowly drops (long)

Vacuous Mutual Information & Mis-Estimation

Proposition (Informal)

Det. DNNs with strictly monotone nonlinearities (e.g., tanh or sigmoid)

5/11

Vacuous Mutual Information & Mis-Estimation

Proposition (Informal)

Det. DNNs with strictly monotone nonlinearities (e.g., tanh or sigmoid)

= I(X;Ty) is independent of the DNN parameters

5/11

Vacuous Mutual Information & Mis-Estimation

Proposition (Informal)

Det. DNNs with strictly monotone nonlinearities (e.g., tanh or sigmoid)

= I(X;Ty) is independent of the DNN parameters

o I(X;Ty) a.s. infinite (continuous X') or constant H(X) (discrete X)

5/11

Vacuous Mutual Information & Mis-Estimation

Proposition (Informal)

Det. DNNs with strictly monotone nonlinearities (e.g., tanh or sigmoid)

= I(X;Ty) is independent of the DNN parameters

o I(X;Ty) a.s. infinite (continuous X') or constant H(X) (discrete X)

Feature Space (X)

X ~ Unif(X)
|X| = 3000

5/11

Vacuous Mutual Information & Mis-Estimation

Proposition (Informal)

Det. DNNs with strictly monotone nonlinearities (e.g., tanh or sigmoid)

= I(X;Ty) is independent of the DNN parameters

o I(X;Ty) a.s. infinite (continuous X') or constant H(X) (discrete X)

Feature Space (X) Internal Rep. Space (I} = fi(X))

2196 1.095 o 10-1.0
X ~ Unif(X) T ~ Unif(Ty)
|X| = 3000 |Te| = |X| = 3000

5/11

Vacuous Mutual Information & Mis-Estimation

Proposition (Informal)

Det. DNNs with strictly monotone nonlinearities (e.g., tanh or sigmoid)

= I(X;Ty) is independent of the DNN parameters

o I(X;Ty) a.s. infinite (continuous X') or constant H(X) (discrete X)

o Past Works: Use binning-based proxy of I(X;7}) (aka quantization)

5/11

Vacuous Mutual Information & Mis-Estimation

Proposition (Informal)

Det. DNNs with strictly monotone nonlinearities (e.g., tanh or sigmoid)

= I(X;Ty) is independent of the DNN parameters

o I(X;Ty) a.s. infinite (continuous X') or constant H(X) (discrete X)

o Past Works: Use binning-based proxy of I(X;7}) (aka quantization)
Q For non-negligible bin size I(X;Bin(Ty)) # I(X;Ty)

5/11

Vacuous Mutual Information & Mis-Estimation

Proposition (Informal)

Det. DNNs with strictly monotone nonlinearities (e.g., tanh or sigmoid)

= I(X;Ty) is independent of the DNN parameters

o I(X;Ty) a.s. infinite (continuous X') or constant H(X) (discrete X)

o Past Works: Use binning-based proxy of I(X;7}) (aka quantization)
Q For non-negligible bin size I(X;Bin(Ty)) # I(X;Ty)
Q I(X;Bin(Ty)) highly sensitive to user-defined bin size:

5/11

Vacuous Mutual Information & Mis-Estimation

Proposition (Informal)

Det. DNNs with strictly monotone nonlinearities (e.g., tanh or sigmoid)

= I(X;Ty) is independent of the DNN parameters

o I(X;Ty) a.s. infinite (continuous X') or constant H(X) (discrete X)
o Past Works: Use binning-based proxy of I(X;7}) (aka quantization)
Q For non-negligible bin size I(X;Bin(Ty)) # I(X;Ty)
Q I(X;Bin(Ty)) highly sensitive to user-defined bin size:

bin size = 0.0001 bin size = 0.001 bin size = 0.01 bin size = 0.1
8- I T 1
5 — L \/\/\
© — Laer2
§4'—Layev3 1 1 1
> —— Layer4
— Layer5
10° 10! 10? 10° 10!
Epoch

5/11

Vacuous Mutual Information & Mis-Estimation

Proposition (Informal)

Det. DNNs with strictly monotone nonlinearities (e.g., tanh or sigmoid)

= I(X;Ty) is independent of the DNN parameters

o I(X;Ty) a.s. infinite (continuous X) or constant H (X)) (discrete X)
o Past Works: Use binning-based proxy of I(X;7}) (aka quantization)
Q For non-negligible bin size I(X;Bin(Ty)) # I(X;Ty)
Q I(X;Bin(Ty)) highly sensitive to user-defined bin size:

bin size = 0.0001 bin size = 0.001 bin size = 0.01 bin size = 0.1
8- I I 1
5 — L \/\/\
© — Laer2
§4'—Layev3 1 1 1
> —— Layer4
— Layer5
10° 10! 10? 10° 10!
Epoch

@ Real Problem: Mismatch between I(X;7T;) measurement and model
5/11

Auxiliary Framework - Noisy Deep Neural Networks

Modification: Inject (small) Gaussian noise to neurons’ output

6/11

Auxiliary Framework - Noisy Deep Neural Networks

Modification: Inject (small) Gaussian noise to neurons’ output

——————————————————————————————————————

6/11

Auxiliary Framework - Noisy Deep Neural Networks

Modification: Inject (small) Gaussian noise to neurons’ output

——————————————————————————————————————

—> X — Ty is a parametrized channel (by DNN's parameters)

6/11

Auxiliary Framework - Noisy Deep Neural Networks

Modification: Inject (small) Gaussian noise to neurons’ output

——————————————————————————————————————

—> X — Ty is a parametrized channel (by DNN's parameters)

= I(X;Ty) is a function of parameters!

6/11

Auxiliary Framework - Noisy Deep Neural Networks

Modification: Inject (small) Gaussian noise to neurons’ output

o Formally: T, = Sy + Z;, where Sy £ f,(Ty—1) and Z, ~ N(0, 0%1y)

——————————————————————————————————————

—> X — Ty is a parametrized channel (by DNN's parameters)
= I(X;Ty) is a function of parameters!

® Challenge: How to accurately track I(X;T})?

6/11

High-Dim. & Nonparametric Functional Estimation

7/11

High-Dim. & Nonparametric Functional Estimation

Distill I(X;Ty) Estimation into Noisy Differential Entropy Estimation:

Estimate h(P * N,) from n i.i.d. samples S™ = (S;)"; of P € F; (non-
parametric class) and knowledge of A, (Gaussian measure N(0, 0%1y)).

7/11

High-Dim. & Nonparametric Functional Estimation

Distill I(X;Ty) Estimation into Noisy Differential Entropy Estimation:

Estimate h(P * N,) from n i.i.d. samples S™ = (S;)"; of P € F; (non-
parametric class) and knowledge of A, (Gaussian measure N(0, 0%1y)).

Theorem (ZG-Greenewald-Polyanskiy-Weed’19)

Sample complexity of any accurate estimator (additive gap n) is (f}—;)

7/11

High-Dim. & Nonparametric Functional Estimation

Distill I(X;T,) Estimation into Noisy Differential Entropy Estimation:

Estimate h(P * N,) from n i.i.d. samples S" £ (S;)"_; of P € F, (non-
parametric class) and knowledge of A, (Gaussian measure N(0, 0%1y)).

Theorem (ZG-Greenewald-Polyanskiy-Weed’19)

Sample complexity of any accurate estimator (additive gap n) is (f}—;)

Structured Estimator*: h(S",0) £ h(P, * N,), where B, = 1 3~ 55,

* Efficient and parallelizable 711

High-Dim. & Nonparametric Functional Estimation

Distill I(X;T,) Estimation into Noisy Differential Entropy Estimation:

Estimate h(P * N,) from n i.i.d. samples S" £ (S;)"_; of P € F, (non-
parametric class) and knowledge of A, (Gaussian measure N(0, 0%1y)).

Theorem (ZG-Greenewald-Polyanskiy-Weed’19)

Sample complexity of any accurate estimator (additive gap n) is (f}—;)

Structured Estimator*: h(S",0) £ h(P, x N,), where P, = 1 > ds,

Theorem (ZG-Greenewald-Polyanskiy-Weed’19)

For]-"(;SI?) £ {P|P is K-subgaussian in]Rd}, d>1 and o > 0, we have

h(P * N,) — E(S",o)] <dlgont

SUp FE9 Egn

7/11

High-Dim. & Nonparametric Functional Estimation

Distill I(X;T,) Estimation into Noisy Differential Entropy Estimation:

Estimate h(P * N,) from n i.i.d. samples S" £ (S;)"_; of P € F, (non-
parametric class) and knowledge of A, (Gaussian measure N(0, 0%1y)).

Theorem (ZG-Greenewald-Polyanskiy-Weed’19)

Sample complexity of any accurate estimator (additive gap n) is (f}—;)

Structured Estimator*: h(S",0) £ h(P, x N,), where P, = 1 > ds,

Theorem (ZG-Greenewald-Polyanskiy-Weed’19)

For]-"(;SI?) £{P|P is K-subgaussian in R?}, d > 1 and o > 0, we have

h(P * Ny) — ﬁ(sn,o)] <dlgont

SUp FE9 Egn

Optimality: E(S”, o) attains sharp dependence on both n and d!

7/11

I(X;T,) Dynamics - lllustrative Minimal Example

Single Neuron Classification:

tanh(wX + b)

8/11

I(X;T,) Dynamics - lllustrative Minimal Example

Single Neuron Classification:

X

|

o Input: X ~ Unif{£1, £3}

tanh(wX + b)

Xye1 2 {-3,-1,1}, X, = {3}

8/11

I(X;T,) Dynamics - lllustrative Minimal Example

Single Neuron Classification:

X

|

o Input: X ~ Unif{£1, £3}

tanh(wX + b)

Xye1 2 {-3,-1,1}, X, = {3}

8/11

I(X;T,) Dynamics - lllustrative Minimal Example

Single Neuron Classification: X
—£—ftanh(wX + b)

o Input: X ~ Unif{£1, £3}
Xye1 2 {-3,-1,1}, X, = {3}

@ Center & sharpen transition (<= increase w and keep b = —2w)

8/11

I(X;T,) Dynamics - lllustrative Minimal Example

Single Neuron Classification: X
—£—ftanh(wX + b)

o Input: X ~ Unif{£1, +3}
Xye1 2 {-3,-1,1}, X, = {3}

8/11

I(X;T,) Dynamics - lllustrative Minimal Example

Single Neuron Classification: X
—£—ftanh(wX + b)

o Input: X ~ Unif{£1, +3}
Xye1 2 {-3,-1,1}, X, = {3}

L] Correct classification performance
8/11

I(X;T,) Dynamics - lllustrative Minimal Example

Single Neuron Classification:

X

|

o Input: X ~ Unif{£1, £3}

tanh(wX + b)

Xye1 2 {-3,-1,1}, X, = {3}

@ Mutual Information:

8/11

I(X;T,) Dynamics - lllustrative Minimal Example

Single Neuron Classification:
X—»tanh(wX +b) Sw.b T
o Input: X ~ Unif{£1, £3}
M=t {3211}, e 2 (3) Z ~ N(0,0%)

o Mutual Information: I(X;T) = I(Syp; Swp+ Z)

8/11

I(X;T,) Dynamics - lllustrative Minimal Example

Single Neuron Classification:
X—»tanh(wX +b) Sw.b T
o Input: X ~ Unif{+£1,£3}
M=t {3211}, e 2 (3) Z ~ N(0,0%)

o Mutual Information: I(X;T) = I(Syp; Swp+ Z)

= I(X;T) is # bits (nats) transmittable over AWGN with symbols
Swp = {tanh(—3w+b), tanh(—w+b), tanh(w+b), tanh (Bw+b) }

8/11

I(X;T,) Dynamics - lllustrative Minimal Example

Single Neuron Classification:
X—»tanh(wX +b) Sw.b T
o Input: X ~ Unif{+£1,£3}
M=t {3211}, e 2 (3) Z ~ N(0,0%)

o Mutual Information: I(X;T) = I(Syp; Swp+ Z)

= I(X;T) is # bits (nats) transmittable over AWGN with symbols
Swp = {tanh(—3w+b), tanh(—w+b), tanh(w+b), tanh Bw+b) } — {£1}

8/11

I(X;T,) Dynamics - lllustrative Minimal Example

Single Neuron Classification:

X—»tanh(wX +b) Sw.b T

o Input: X ~ Unif{+£1,£3}
Xye1 2 {-3,-1,1}, X, = {3}
o Mutual Information: I(X;T) = I(Syp; Swp+ Z)

Z ~ N(0,0?%)

= I(X;T) is # bits (nats) transmittable over AWGN with symbols
Swp = {tanh(—3w+b), tanh(—w+b), tanh(w+b), tanh Bw+b) } — {£1}

1
& 05
o
% Merge 1 Merge 2
2 0
5
(1]
£-05

-1

10%0’ 10° 10° 10 10°

Epoch 8/11

I(X;T,) Dynamics - lllustrative Minimal Example

Single Neuron Classification:

o Input: X ~ Unif{+£1,£3}
Xye1 2 {-3,-1,1}, X, = {3}
o Mutual Information: I(X;T) = I(Syp; Swp+ Z)

= I(X;T) is # bits (nats) transmittable over AWGN with symbols

|

X

tanh(wX + b)

Z ~ N(0,0?%)

Swp = {tanh(—3w+b), tanh(—w+b), tanh(w+b), tanh Bw+b) } — {£1}

1

S
3]

Heatmap of PDF
S
o o

=

Merge 1

Merge 2

10%0"

102

10°
Epoch

10*

10°

Mutual information

1.5

0.5

" n(4

In(3)

In(2)

10°

Clustering of Representations - Larger Networks

Noisy version of DNN from [Shwartz-Tishby’17]:

9/11

Clustering of Representations - Larger Networks

Noisy version of DNN from [Shwartz-Tishby’17]:
o Binary Classification: 12-bit input & 12-10-7-5-4-3-2 tanh MLP

9/11

Clustering of Representations - Larger Networks

Noisy version of DNN from [Shwartz-Tishby’17]:

o Binary Classification: 12-bit input & 12-10-7-5-4-3-2 tanh MLP
Ep28 Ep 8976
1.0 1.0
0.0 0.0
1.0 1.0
10 10
1.0 00 0.0 1.0 00 1.0 00 0.0
10 -1.0 1.0 -10
8 = — Layer 1
:‘5 = Layer2
g 44— Layer 3
=
(R e . E—— N R S i —— I —— -
] 0.5 7 — Train
2 —— Test
0.0 s H R T e
10° 10t 102 103 10*
Epoch

9/11

Clustering of Representations - Larger Networks

Noisy version of DNN from [Shwartz-Tishby’17]:
o Binary Classification: 12-bit input & 12-10-7-5-4-3-2 tanh MLP

o Verified in multiple additional experiments

9/11

Clustering of Representations - Larger Networks

Noisy version of DNN from [Shwartz-Tishby’17]:
o Binary Classification: 12-bit input & 12-10-7-5-4-3-2 tanh MLP

o Verified in multiple additional experiments

= Compression of I(X;Ty) driven by clustering of representations

9/11

Circling Back to Deterministic DNNs

‘I(X;Tg) is constant/infinite = Doesn't measure clustering

10/11

Circling Back to Deterministic DNNs

‘I(X;Tg) is constant/infinite = Doesn’'t measure cIustering‘

Reexamine Measurements: Computed I (X;Bin(7})) = H(Bin(1}))

10/11

Circling Back to Deterministic DNNs

‘I(X;Tg) is constant/infinite = Doesn’'t measure cIustering‘

Reexamine Measurements: Computed I (X;Bin(7})) = H(Bin(1}))

o H(Bin(T;)) measures clustering (maximized by uniform distribution)

10/11

Circling Back to Deterministic DNNs

‘I(X;Tg) is constant/infinite = Doesn’'t measure cIustering‘

Reexamine Measurements: Computed I(X;Bin(1})) = H (Bin(17))

o H(Bin(T;)) measures clustering (maximized by uniform distribution)

Test: I(X;Ty) and H(Bin(T7)) highly correlated in noisy DNNs*

8"—Layer1 ——
I —LayerZW
g 4_—Laysr3
z :m:;//wﬂ“\?
0~ N . 8796
= 8-
|
E
£ 4
=)
T 0 - e e S
10° 10t 102 103 10*
Epoch

* When bin size chosen o noise std. 10/11

Circling Back to Deterministic DNNs

‘I(X;Tg) is constant/infinite = Doesn’'t measure cIustering‘

Reexamine Measurements: Computed I(X;Bin(1})) = H (Bin(17))

o H(Bin(T;)) measures clustering (maximized by uniform distribution)
Test: I(X;Ty) and H(Bin(T7)) highly correlated in noisy DNNs*

—> Past works not measuring Ml but clustering (via binned-MI)!

10/11

Circling Back to Deterministic DNNs

‘I(X;Tg) is constant/infinite = Doesn’'t measure cIustering‘

Reexamine Measurements: Computed I(X;Bin(1})) = H (Bin(17))

o H(Bin(T;)) measures clustering (maximized by uniform distribution)
Test: I(X;Ty) and H(Bin(T7)) highly correlated in noisy DNNs*
—> Past works not measuring Ml but clustering (via binned-MI)!

By-Product Result:

10/11

Circling Back to Deterministic DNNs

‘I(X;Tg) is constant/infinite = Doesn’'t measure cIustering‘

Reexamine Measurements: Computed I(X;Bin(1})) = H (Bin(17))

o H(Bin(T;)) measures clustering (maximized by uniform distribution)
Test: I(X;Ty) and H(Bin(T7)) highly correlated in noisy DNNs*
—> Past works not measuring Ml but clustering (via binned-MI)!

By-Product Result:

o Refute ‘compression (tight clustering) improves generalization’ claim

[Come see us at poster #96 for details]

10/11

o Reexamined Information Bottleneck Compression:

11/11

o Reexamined Information Bottleneck Compression:

> I(X;T) fluctuations in det. DNNSs are theoretically impossible

11/11

o Reexamined Information Bottleneck Compression:

> I(X;T) fluctuations in det. DNNSs are theoretically impossible

> Yet, past works presented (binned) I(X;T) dynamics during training

11/11

o Reexamined Information Bottleneck Compression:
> I(X;T) fluctuations in det. DNNs are theoretically impossible
> Yet, past works presented (binned) I(X;T) dynamics during training

o Noisy DNN Framework: Studying IT quantities over DNNs

11/11

o Reexamined Information Bottleneck Compression:
> I(X;T) fluctuations in det. DNNs are theoretically impossible
> Yet, past works presented (binned) I(X;T) dynamics during training

o Noisy DNN Framework: Studying IT quantities over DNNs

> Optimal estimator (in n and d) for accurate M| estimation

11/11

o Reexamined Information Bottleneck Compression:
> I(X;T) fluctuations in det. DNNs are theoretically impossible
> Yet, past works presented (binned) I(X;T) dynamics during training

o Noisy DNN Framework: Studying IT quantities over DNNs

> Optimal estimator (in n and d) for accurate M| estimation

> Clustering of learned representations is the source of compression

11/11

o Reexamined Information Bottleneck Compression:

> I(X;T) fluctuations in det. DNNs are theoretically impossible
> Yet, past works presented (binned) I(X;T) dynamics during training

o Noisy DNN Framework: Studying IT quantities over DNNs

> Optimal estimator (in n and d) for accurate M| estimation

> Clustering of learned representations is the source of compression

o Clarify Past Observations of Compression: in fact show clustering

11/11

o Reexamined Information Bottleneck Compression:

> I(X;T) fluctuations in det. DNNs are theoretically impossible
> Yet, past works presented (binned) I(X;T) dynamics during training

o Noisy DNN Framework: Studying IT quantities over DNNs

> Optimal estimator (in n and d) for accurate M| estimation

> Clustering of learned representations is the source of compression

o Clarify Past Observations of Compression: in fact show clustering

> Compression/clustering and generalization and not necessarily related

11/11

o Reexamined Information Bottleneck Compression:

> I(X;T) fluctuations in det. DNNs are theoretically impossible
> Yet, past works presented (binned) I(X;T) dynamics during training

o Noisy DNN Framework: Studying IT quantities over DNNs

> Optimal estimator (in n and d) for accurate M| estimation

> Clustering of learned representations is the source of compression

o Clarify Past Observations of Compression: in fact show clustering

> Compression/clustering and generalization and not necessarily related

Thank you!

11/11

Clustering of Representations - Larger Networks

Noisy version of DNN from [Shwartz-Tishby’17]:

11/1:

Clustering of Representations - Larger Networks

Noisy version of DNN from [Shwartz-Tishby’17]:
o Binary Classification: 12-bit input & 12-10-7-5-4-3-2 tanh MLP

11/1:

Clustering of Representations - Larger Networks

Noisy version of DNN from [Shwartz-Tishby’17]:

o Binary Classification: 12-bit input & 12-10-7-5-4-3-2 tanh MLP
Ep 28 Ep 80 Ep 8976
1.0 10 1.0
0.0 0.0 0.0
1.0 0 1.0
1.0 1.0 1.0
-1.0 00 0.0 -1.0 00 0.0 1.0 00 0.0
10 -1.0 10 -10 10 -1.0
8 - = Layer 1 =
:@ = Layer 2
g R Layer 3
Z =i
0 =virr 38,80 S 8796
@ 0.5 = — Tain
S — Test
0.0 =iy i e T
10° 10! 102 10? 10*
Epoch

11/1:

Clustering of Representations - Larger Networks

Noisy version of DNN from [Shwartz-Tishby’17]:
o Binary Classification: 12-bit input & 12-10-7-5-4-3-2 tanh MLP

11/1:

Clustering of Representations - Larger Networks

Noisy version of DNN from [Shwartz-Tishby’17]:

o Binary Classification: 12-bit input & 12-10-7-5-4-3-2 tanh MLP
Ep 22 Ep 7230

8 7 — Layer 1

% - Layer 2
£4- —— Layer 3
= —— Layer 4
= —— Laiers

0.5 = —— Train

Loss

— Test

0.0 = e s g o
100 10t 102 103 10*
Epoch

@ weight orthonormality regularization [Cisse et al.’17]
11/1;

Clustering of Representations - Larger Networks

Noisy version of DNN from [Shwartz-Tishby’17]:
o Binary Classification: 12-bit input & 12-10-7-5-4-3-2 tanh MLP

o Verified in multiple additional experiments

11/1:

Clustering of Representations - Larger Networks

Noisy version of DNN from [Shwartz-Tishby’17]:
o Binary Classification: 12-bit input & 12-10-7-5-4-3-2 tanh MLP

o Verified in multiple additional experiments

= Compression of I(X;Ty) driven by clustering of representations

11/1:

Mutual Information Estimation in Noisy DNNs

Noisy DNN: T, =S, + Zy, where .Sy = fg(Tg_l) and Z, ~ N(O,O’2Id)

——————————————————————————————————————

11/11

Mutual Information Estimation in Noisy DNNs

Noisy DNN: T, =S, + Zy, where .Sy = f[(T[_l) and Z, ~ N(O, 0'2Id)

——————————————————————————————————————

o Mutual Information: 1(X;7;) = h(T}) — [dPx(x)h(Ty|X = x)

11/11

Mutual Information Estimation in Noisy DNNs

Noisy DNN: T, =S, + Zy, where .Sy = f[(T[_l) and Z, ~ N(O, 0'2Id)

——————————————————————————————————————

o Mutual Information: 1(X;7;) = h(T}) — [dPx(x)h(Ty|X = x)

o Structure: Sy 1 7, = Ty, =S+ 7Z;,~PxN,

11/11

Mutual Information Estimation in Noisy DNNs

Noisy DNN: T, =S, + Zy, where .Sy = f[(T[_l) and Z, ~ N(O, 0'2Id)

——————————————————————————————————————

o Mutual Information: 1(X;7;) = h(T}) — [dPx(x)h(Ty|X = x)

o Structure: Sy 1 7, = T;=8,+7Z,~PxN,

11/11

Mutual Information Estimation in Noisy DNNs

Noisy DNN: T, =S, + Zy, where .Sy = f[(T[_l) and Z, ~ N(O, 0'2Id)

——————————————————————————————————————

o Mutual Information: 1(X;7;) = h(T}) — [dPx(x)h(Ty|X = x)

o Structure: S, 1 7, = T;=S/+Z;,~PxNg,

11/11

Mutual Information Estimation in Noisy DNNs

Noisy DNN: T, =S, + Zy, where .Sy = f[(T[_l) and Z, ~ N(O, 0'2Id)

——————————————————————————————————————

o Mutual Information: 1(X;7;) = h(T}) — [dPx(x)h(Ty|X = x)
o Structure: S, 1L 7, = Ty=S;+Z;~Px*xN,

@ Know the distribution N, of Z, (noise injected by design)

11/11

Mutual Information Estimation in Noisy DNNs

Noisy DNN: T, =S, + Zy, where .Sy = f[(T[_l) and Z, ~ N(O, 0'2Id)

o Mutual Information: 1(X;7;) = h(T}) — [dPx(x)h(Ty|X = x)
o Structure: S, 1L 7, = Ty=S;+Z;~Px*xN,

@ Know the distribution N, of Z, (noise injected by design)

11/11

Mutual Information Estimation in Noisy DNNs

Noisy DNN: T, =S, + Zy, where .Sy = f[(T[_l) and Z, ~ N(O, 0'2Id)

o Mutual Information: 1(X;7;) = h(T}) — [dPx(x)h(Ty|X = x)
o Structure: Sel Zy, = Ty =8S+7Z,~P * Ny
@ Know the distribution N, of Z, (noise injected by design)

® Extremely complicated P = Treat as unknown

11/11

Mutual Information Estimation in Noisy DNNs

Noisy DNN: T, =S, + Zy, where .Sy = f[(T[_l) and Z, ~ N(O, 0'2Id)

o Mutual Information: 1(X;7;) = h(T}) — [dPx(x)h(Ty|X = x)
o Structure: S, 1L 7, = Ty=S;+Z;~Px*xN,

@ Know the distribution N, of Z, (noise injected by design)

® Extremely complicated P = Treat as unknown

@ Easily get i.i.d. samples from P via DNN forward pass

11/11

Structured Estimator (with Implementation in Mind)

Differential Entropy Estimation under Gaussian Convolutions
Estimate h(P * N) vian i.i.d. samples S™ = (S;)"_, from unknown

P € Fy (nonparametric class) and knowledge of N, (noise distribution).

11/11

Structured Estimator (with Implementation in Mind)

Differential Entropy Estimation under Gaussian Convolutions
Estimate h(P * N) vian i.i.d. samples S™ = (S;)"_, from unknown

P € Fy (nonparametric class) and knowledge of N, (noise distribution).

Nonparametric Class: Specified by DNN architecture (d = T, ‘width’)

11/11

Structured Estimator (with Implementation in Mind)

Differential Entropy Estimation under Gaussian Convolutions
Estimate h(P * N) vian i.i.d. samples S™ = (S;)"_, from unknown

P € Fy (nonparametric class) and knowledge of N, (noise distribution).

Nonparametric Class: Specified by DNN architecture (d = T ‘width")

Goal: Simple & parallelizable for efficient implementation

11/11

Structured Estimator (with Implementation in Mind)

Differential Entropy Estimation under Gaussian Convolutions
Estimate h(P * N) vian i.i.d. samples S™ = (S;)"_, from unknown

P € Fy (nonparametric class) and knowledge of N, (noise distribution).

Nonparametric Class: Specified by DNN architecture (d = T ‘width")

Goal: Simple & parallelizable for efficient implementation

ds,

k2

s

Estimator: 1(S", o) £ h(Psn * N,), where Pgn £ 1

=1

11/11

Structured Estimator (with Implementation in Mind)

Differential Entropy Estimation under Gaussian Convolutions
Estimate h(P * N) vian i.i.d. samples S™ = (S;)"_, from unknown

P € Fy (nonparametric class) and knowledge of N, (noise distribution).

Nonparametric Class: Specified by DNN architecture (d = T ‘width")

Goal: Simple & parallelizable for efficient implementation

~ A ~ n
Estimator: h(S™, o) £ h(Psn * N), where Pgn £ 1 3™ g,
i=1

o Plug-in: h is plug-in est. for the functional T,(P) £ h(P x N,)

11/11

Structured Estimator - Convergence Rate

Theorem (ZG-Greenewald-Weed-Polyanskiy’19)

For any o >0, d > 1, we have
sup E ’h(P * Ny) — h(pSn *,/\/'U)’ <Corak - n=%
PeFyY
where Cy g x = Oy, x(c?) for a constant c.

11/11

Structured Estimator - Convergence Rate

Theorem (ZG-Greenewald-Weed-Polyanskiy’19)

For any o >0, d > 1, we have
sup E ’h(P * Ny) — h(pSn *,/\/'U)’ <Corak - n=%
PeFyY
where Cy g x = Oy, x(c?) for a constant c.

Comments:

11/11

Structured Estimator - Convergence Rate

Theorem (ZG-Greenewald-Weed-Polyanskiy’19)

For any o >0, d > 1, we have

sup B [h(P # Ny) — h(Psn + Ny)| < Cog i -n73
PeFSR
d,K

where Cy g x = Oy, x(c?) for a constant c.

Comments:

o Explicit Expression: Enables concrete error bounds in simulations

11/11

Structured Estimator - Convergence Rate

Theorem (ZG-Greenewald-Weed-Polyanskiy’19)
For any o >0, d > 1, we have
sup E ’h(P * Ny) — h(PSn *Na)’ < Codk - n=3
PeFSR
where Cy g x = Oy, & (c?) for a constant c.

Comments:
o Explicit Expression: Enables concrete error bounds in simulations

1
o Minimax Rate Optimal: Attains parametric estimation rate O(n™2)

11/11

Structured Estimator - Convergence Rate

Theorem (ZG-Greenewald-Weed-Polyanskiy’19)

For any o >0, d > 1, we have
sup E ’h(P * Ny) — h(pSn *Na)’ < Codk - n=%
PeFSR
where Cy g x = Oy, & (c?) for a constant c.

Comments:
o Explicit Expression: Enables concrete error bounds in simulations

1
o Minimax Rate Optimal: Attains parametric estimation rate O(n™2)

Proof (initial step): Based on [Polyanskiy-Wu'16]

’h(p « Ny) — h(Pgn *N},)’ S WA(P * Ny, Pon 5 Ny)

11/11

Structured Estimator - Convergence Rate

Theorem (ZG-Greenewald-Weed-Polyanskiy’19)
For any o >0, d > 1, we have

sup B [h(P # Ny) — h(Psn + Ny)| < Cog i -n73
PeFSR
d,K

where Cy g x = Oy, & (c?) for a constant c.

Comments:
o Explicit Expression: Enables concrete error bounds in simulations

1
o Minimax Rate Optimal: Attains parametric estimation rate O(n™2)

Proof (initial step): Based on [Polyanskiy-Wu'16]

(P 5 No) = (P + N)| £ WA(P % N, P)

= Analyze empirical 1-Wasserstein distance under Gaussian convolutions
11/11

Empirical W; & The Magic of Gaussian Convolution

p-Wasserstein Distance: For two distributions P and Q on R% and p > 1
. 1
Wy(P,Q) £ inf (EI|X — Y[7)"/”

infimum over all couplings of P and Q

11/11

Empirical W; & The Magic of Gaussian Convolution

p-Wasserstein Distance: For two distributions P and Q on R% and p > 1

W,(P,Q) £ inf (E| X — Y|?)"/”

infimum over all couplings of P and Q

Empirical 1-Wasserstein Distance:

11/11

Empirical W; & The Magic of Gaussian Convolution

p-Wasserstein Distance: For two distributions P and Q on R% and p > 1

W,(P,Q) £ inf (E| X — Y|?)"/”

infimum over all couplings of P and Q

Empirical 1-Wasserstein Distance:

o Distribution P on R¢

11/11

Empirical W; & The Magic of Gaussian Convolution

p-Wasserstein Distance: For two distributions P and Q on R% and p > 1

W,(P,Q) £ inf (E| X — Y|?)"/”

infimum over all couplings of P and Q

Empirical 1-Wasserstein Distance:

o Distribution P on R? = i.i.d. Samples (S;)",

11/11

Empirical W; & The Magic of Gaussian Convolution

p-Wasserstein Distance: For two distributions P and Q on R% and p > 1

W,(P,Q) £ inf (E| X — Y|?)"/”

infimum over all couplings of P and Q

Empirical 1-Wasserstein Distance:

o Distribution P on R? = i.i.d. Samples (S;)",

o Empirical distribution Pgn £ 134,

o8

=1

11/11

Empirical W; & The Magic of Gaussian Convolution

p-Wasserstein Distance: For two distributions P and Q on R% and p > 1

W,(P,Q) £ inf (E| X — Y|?)"/”

infimum over all couplings of P and Q

Empirical 1-Wasserstein Distance:

o Distribution P on R? = i.i.d. Samples (S;)",

5,

K3

o Empirical distribution Pgn 2 1

o8

=1

= Dependence on (n,d) of EW; (P,Pgn)

11/11

Empirical W; & The Magic of Gaussian Convolution

p-Wasserstein Distance: For two distributions P and Q on R% and p > 1

W,(P,Q) £ inf (E| X — Y|?)"/”

infimum over all couplings of P and Q

Empirical 1-Wasserstein Distance:

o Distribution P on R? = i.i.d. Samples (S;)",

5,

K3

o Empirical distribution Pgn 2 1

o8

=1

= Dependence on (n,d) of EW; (P,Pgn) >n-

=

11/11

Empirical W; & The Magic of Gaussian Convolution

p-Wasserstein Distance: For two distributions P and Q on R% and p > 1

W,(P,Q) 2 inf (E| X — Y|[?)"/?

infimum over all couplings of P and Q

Empirical 1-Wasserstein Distance:

o Distribution P on R? = i.i.d. Samples (S;)",

5,

K3

o Empirical distribution Pgn 2 1

o8

=1

= Dependence on (n,d) of EW; (P,Pgn) > n=a

11/11

Empirical W; & The Magic of Gaussian Convolution

p-Wasserstein Distance: For two distributions P and Q on R% and p > 1

W,(P,Q) 2 inf (E| X — Y|[?)"/?

infimum over all couplings of P and Q

Empirical 1-Wasserstein Distance:

o Distribution P on R? = i.i.d. Samples (S;)",

5,

K3

o Empirical distribution Pgn 2 1

o8

=1

= Dependence on (n,d) of EW; (P,Pgn) > n=a

Theorem (ZG-Greenewald-Weed-Polyanskiy’19)

For any d, we have EW; (P * N, Pgn x N;) < O0p4 (n_%)

11/11

Empirical W; & The Magic of Gaussian Convolution

p-Wasserstein Distance: For two distributions P and Q on R% and p > 1

W,(P,Q) 2 inf (E| X — Y|[?)"/?

infimum over all couplings of P and Q

Empirical 1-Wasserstein Distance:

o Distribution P on R? = i.i.d. Samples (S;)",

5,

K3

o Empirical distribution Pgn 2 1

o8

=1

= Dependence on (n,d) of EW; (P,Pgn) > n=a

Is Exponentiality in Dimension Necessary?

11/11

Is Exponentiality in Dimension Necessary?

Theorem (ZG-Greenewald-Polyanskiy-Weed’19)
For any o > 0, sufficiently large d and sufficiently small n > 0, we have

n*(n,o,Fq) =Q (27:]—2)‘1), where (o) >0 is monotonically decreasing in o.

11/11

Is Exponentiality in Dimension Necessary?

Theorem (ZG-Greenewald-Polyanskiy-Weed’19)

For any o > 0, sufficiently large d and sufficiently small n > 0, we have

n*(n,o,Fq) =Q (T’:]—Z)d), where (o) >0 is monotonically decreasing in o.

:0(6

d

NG

> rate attained by the plugin estimator is sharp in n and d

11/11

Is Exponentiality in Dimension Necessary?

Theorem (ZG-Greenewald-Polyanskiy-Weed’19)

For any o > 0, sufficiently large d and sufficiently small n > 0, we have

n*(n,o,Fq) =Q (T’:]—Z)d), where (o) >0 is monotonically decreasing in o.

d
= 0 <c_> rate attained by the plugin estimator is sharp in n and d

N

Proof (main ideas):

11/11

Is Exponentiality in Dimension Necessary?

Theorem (ZG-Greenewald-Polyanskiy-Weed’19)

For any o > 0, sufficiently large d and sufficiently small n > 0, we have

n*(n,o,Fq) =Q (T’:]—;)d), where (o) >0 is monotonically decreasing in o.

d
= 0 (C—> rate attained by the plugin estimator is sharp in n and d

N

Proof (main ideas):

o Relate h(P * N) to Shannon entropy H(Q)
supp(Q) = peak-constrained AWGN capacity achieving codebook C,

11/11

Is Exponentiality in Dimension Necessary?

Theorem (ZG-Greenewald-Polyanskiy-Weed’19)
For any o > 0, sufficiently large d and sufficiently small n > 0, we have

n*(n,o,Fq) =Q (277(]—2)‘1), where (o) >0 is monotonically decreasing in o.

d
= 0 (C—> rate attained by the plugin estimator is sharp in n and d

NG

Proof (main ideas):

o Relate h(P * N) to Shannon entropy H(Q)

supp(Q) = peak-constrained AWGN capacity achieving codebook C,

|Cal
nlog|Cql

o H(Q) estimation sample complexity 2 () [Valiant-Valiant'10]

11/11

