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o Lacking Theory: Macroscopic understanding of Deep Learning

@ What drives the evolution of internal representations?
@ What are properties of learned representations?

e How do fully trained networks process information?

9o Attempts to Understand Effectiveness of DL:

P Structure of loss landscape
[Saxe et al.'14, Choromanska et al.'15, Kawaguchi'16, Keskar et al.'17]

> Wavelets and sparse coding
[Bruna-Mallat'13, Giryes et al."16, Papyan et al.’16]

> Adversarial examples
[Szegedy et al.'14, Nguyen et al.’17, Liu et al."16, Cisse et al.’16]

> Information Bottleneck Theory
[Tishby-Zaslavsky'15, Shwartz-Tishby'17, Saxe et al.'18, Gabrié et al.’18]

* Goal: Mathematically analyze IB theory & test ‘Compression’ o
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o Joint Distribution: Pxy = Pxy Pp 7 x

o Information Plane: Evolution of (I(X;7}),1(Y;Ty)) during training
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= I(X;Ty) is independent of the DNN parameters

o I(X;Ty) a.s. infinite (continuous X') or constant H(X) (discrete X)

Feature Space (X) Internal Rep. Space (I} = fi(X))

2196 1.095 o 10-1.0
X ~ Unif(X) T ~ Unif(Ty)
|X| = 3000 |Te| = |X| = 3000
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@ Real Problem: Mismatch between I(X;7T;) measurement and model
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Auxiliary Framework - Noisy Deep Neural Networks

Modification: Inject (small) Gaussian noise to neurons’ output

o Formally: T, = Sy + Z;, where Sy £ f,(Ty—1) and Z, ~ N(0, 0%1y)

——————————————————————————————————————

—> X — Ty is a parametrized channel (by DNN's parameters)
= I(X;Ty) is a function of parameters!

® Challenge: How to accurately track I(X;T})?
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Distill I(X;T,) Estimation into Noisy Differential Entropy Estimation:
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* Efficient and parallelizable 711
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Structured Estimator*: h(S",0) £ h(P, x N,), where P, = 1 > ds,

Theorem (ZG-Greenewald-Polyanskiy-Weed’19)

For ]-"(;SI?) £{P|P is K-subgaussian in R?}, d > 1 and o > 0, we have

h(P * Ny) — ﬁ(sn,o)] <dlgont

SUp FE9 Egn

Optimality: E(S”, o) attains sharp dependence on both n and d!
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@ Center & sharpen transition ( <= increase w and keep b = —2w)
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Single Neuron Classification:

o Input: X ~ Unif{+£1,£3}
Xye1 2 {-3,-1,1}, X, = {3}
o Mutual Information: I(X;T) = I(Syp; Swp+ Z)

= I(X;T) is # bits (nats) transmittable over AWGN with symbols

|
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Clustering of Representations - Larger Networks

Noisy version of DNN from [Shwartz-Tishby’17]:
o Binary Classification: 12-bit input & 12-10-7-5-4-3-2 tanh MLP

o Verified in multiple additional experiments

= Compression of I(X;Ty) driven by clustering of representations
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Circling Back to Deterministic DNNs

‘I(X;Tg) is constant/infinite = Doesn’'t measure cIustering‘

Reexamine Measurements: Computed I(X;Bin(1})) = H (Bin(17))

o H(Bin(T;)) measures clustering (maximized by uniform distribution)
Test: I(X;Ty) and H(Bin(T7)) highly correlated in noisy DNNs*
—> Past works not measuring Ml but clustering (via binned-MI)!

By-Product Result:

o Refute ‘compression (tight clustering) improves generalization’ claim

[Come see us at poster #96 for details]
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o Reexamined Information Bottleneck Compression:

> I(X;T) fluctuations in det. DNNs are theoretically impossible
> Yet, past works presented (binned) I(X;T) dynamics during training

o Noisy DNN Framework: Studying IT quantities over DNNs

> Optimal estimator (in n and d) for accurate M| estimation

> Clustering of learned representations is the source of compression

o Clarify Past Observations of Compression: in fact show clustering

> Compression/clustering and generalization and not necessarily related

Thank you!
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Noisy version of DNN from [Shwartz-Tishby’17]:

o Binary Classification: 12-bit input & 12-10-7-5-4-3-2 tanh MLP
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Clustering of Representations - Larger Networks

Noisy version of DNN from [Shwartz-Tishby’17]:

o Binary Classification: 12-bit input & 12-10-7-5-4-3-2 tanh MLP
Ep 22 Ep 7230
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@ weight orthonormality regularization [Cisse et al.’17]
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Clustering of Representations - Larger Networks

Noisy version of DNN from [Shwartz-Tishby’17]:
o Binary Classification: 12-bit input & 12-10-7-5-4-3-2 tanh MLP

o Verified in multiple additional experiments

= Compression of I(X;Ty) driven by clustering of representations
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Mutual Information Estimation in Noisy DNNs

Noisy DNN: T, =S, + Zy, where .Sy = fg(Tg_l) and Z, ~ N(O,O’2Id)
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Mutual Information Estimation in Noisy DNNs

Noisy DNN: T, =S, + Zy, where .Sy = f[(T[_l) and Z, ~ N(O, 0'2Id)

o Mutual Information: 1(X;7;) = h(T}) — [dPx(x)h(Ty|X = x)
o Structure: S, 1L 7, = Ty=S;+Z;~Px*xN,

@ Know the distribution N, of Z, (noise injected by design)

® Extremely complicated P = Treat as unknown

@ Easily get i.i.d. samples from P via DNN forward pass
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Structured Estimator (with Implementation in Mind)

Differential Entropy Estimation under Gaussian Convolutions
Estimate h(P * N) vian i.i.d. samples S™ = (S;)"_, from unknown

P € Fy (nonparametric class) and knowledge of N, (noise distribution).
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ds,

k2

s

Estimator: 1(S", o) £ h(Psn * N,), where Pgn £ 1

=1
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Structured Estimator (with Implementation in Mind)

Differential Entropy Estimation under Gaussian Convolutions
Estimate h(P * N) vian i.i.d. samples S™ = (S;)"_, from unknown

P € Fy (nonparametric class) and knowledge of N, (noise distribution).

Nonparametric Class: Specified by DNN architecture (d = T ‘width")

Goal: Simple & parallelizable for efficient implementation

~ A ~ n
Estimator: h(S™, o) £ h(Psn * N), where Pgn £ 1 3™ g,
i=1

o Plug-in: h is plug-in est. for the functional T,(P) £ h(P x N,)
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Structured Estimator - Convergence Rate

Theorem (ZG-Greenewald-Weed-Polyanskiy’19)

For any o >0, d > 1, we have
sup E ’h(P * Ny) — h(pSn *,/\/'U)’ <Corak - n=%
PeFyY
where Cy g x = Oy, x(c?) for a constant c.
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Proof (initial step): Based on [Polyanskiy-Wu'16]

’h(p « Ny) — h(Pgn *N},)’ S WA(P * Ny, Pon 5 Ny)

11/11



Structured Estimator - Convergence Rate

Theorem (ZG-Greenewald-Weed-Polyanskiy’19)
For any o >0, d > 1, we have

sup B [h(P # Ny) — h(Psn + Ny)| < Cog i -n73
PeFSR
d,K

where Cy g x = Oy, & (c?) for a constant c.

Comments:
o Explicit Expression: Enables concrete error bounds in simulations

1
o Minimax Rate Optimal: Attains parametric estimation rate O(n™2)

Proof (initial step): Based on [Polyanskiy-Wu'16]

(P 5 No) = (P + N )| £ WA(P % N, P )

= Analyze empirical 1-Wasserstein distance under Gaussian convolutions
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Empirical W; & The Magic of Gaussian Convolution

p-Wasserstein Distance: For two distributions P and Q on R% and p > 1

W,(P,Q) 2 inf (E| X — Y|[?)"/?

infimum over all couplings of P and Q

Empirical 1-Wasserstein Distance:

o Distribution P on R? = i.i.d. Samples (S;)",

5,

K3

o Empirical distribution Pgn 2 1

o8

=1

= Dependence on (n,d) of EW; (P,Pgn) > n=a

Theorem (ZG-Greenewald-Weed-Polyanskiy’19)

For any d, we have EW; (P * N, Pgn x N;) < O0p4 (n_%)
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Is Exponentiality in Dimension Necessary?

Theorem (ZG-Greenewald-Polyanskiy-Weed’19)
For any o > 0, sufficiently large d and sufficiently small n > 0, we have

n*(n,o,Fq) =Q (277(]—2)‘1), where (o) >0 is monotonically decreasing in o.

d
= 0 (C—> rate attained by the plugin estimator is sharp in n and d

NG

Proof (main ideas):

o Relate h(P * N) to Shannon entropy H(Q)

supp(Q) = peak-constrained AWGN capacity achieving codebook C,

|Cal
nlog|Cql

o H(Q) estimation sample complexity 2 ( ) [Valiant-Valiant'10]
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