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e Goal: removing the joint end-to-end constraint.

e« Can we specify explicitly the objective of each
individual layers? (beyond the "black-box" optimization)
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Motivation

A. shallow (1-hidden layer) NNs: approximation or optimisation
guarantees are widely studied.

Ref.: Approximation and Estimation Bounds for Artificial Neural Networks, Barron 1994

Spurious Valleys in Two-layer Neural Network Optimisation Landscapes, Venturi et al.

Breaking the curse of dimensionality with convex neural networks, F Bach

Gradient Descent Learns One-hidden-layer CNN: Don’t be afraid of Spurious Local Minima; Du et al, 2018
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Motivation

A. shallow (1-hidden layer) NNs: approximation or optimisation

guarantees are widely studied.

Ref.: Approximation and Estimation Bounds for Artificial Neural Networks, Barron 1994

Spurious Valleys in Two-layer Neural Network Optimisation Landscapes, Venturi et al.

Breaking the curse of dimensionality with convex neural networks, F Bach

Gradient Descent Learns One-hidden-layer CNN: Don’t be afraid of Spurious Local Minima; Du et al, 2018

B. Inner organization: interaction between layers is not well

understood.

Ref.: On the information bottleneck theory of deep learning, Saxe et al

Study of deep CNNs for (A) or (B) are limited to < 3 layers. ..

Ref.: Learning and Generalization in Overparametrized Neural Networks, Going beyond to Layer; Allen-Zhu et all, 2018
The power of Depth for Feedforward Neural Networks, Ronen Eldan and Ohad Shamir

e Can (A) help to reveal the structure of (B)?

e Have some of the above references a chance to scale
numerically?

(e.g., can theory work in practice?)
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o (Can we reciprocally impose this property layerwise?
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Simply train the CNN layer-per-layer via back-prop. ..
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) trained untﬁrconvergencg — g - |Let k= depth(DNN) Jrl

trained until convergence

e A very Slmgle idea in the literature for a while. ..

Ref.: Learning Deep ResNet Blocks Sequentially using Boosting Theory, Huang et al, 2018
Greedy layer-wise training of Deep Networks, Bengio et al, 2006
Cybernetic predicting devices. Ivakhnenko et al 1965

e ... but it was known to not scale to ImageNet!
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Arch/Perf. on ImageNet Top 5
Layerwise 79.7

AlexNet 79.1
Handcrafted 74.2
Feedback Align(Bio plausible) 16.7

We show that linear separability, as a layer wise objective...

O(z) = LpWa
\ Explicit goal:

Simple to analyse linear separability
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Here, J = 8.

k = depth(DNN) +1

e We apply the same technique. Performance increases?!

Arch/Perf. on ImageNet
Layerwise, k = 2
Layerwise, kK = 3

State-of-the-art (152 layers)

Arch/Perf. of VGG-11 on ImageNet
Layerwise, k = 3

End-to-end

Top 5
86.3
88.7

94.1

Top 5
88.0
88.0

Seems to indicate that some
depth is a key ingredient
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Per Layer Performance

Imagenet Accuracy with Layerwise k-hidden Layer Training
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Per Layer Performance

Imagenet Accuracy with Layerwise k-hidden Layer Training
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Conclusion

e We demonstrate that greedy learning scales to ImageNet.
e Intermediary layers objective are better specified.

e A well-understood 1-hidden layer optimisation would lead
to a numerically successtul procedure for deeper NNs.

 Opens many interesting questions and possibilities!

e On going work: decoupling layers such that they are
trained in parallel.

Ref.: Decoupled Greedy Learning of CNNs, EB et al.



