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Examples for Permutation Invariant Problems:
Detecting Common Attributes

- Smiling

CelebA Dataset, Liu et al.

-  Blond Hair
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Theorem 1 (Zaheer et al.): This architecture can successfully model

any permutation invariant function, even for latent dimension N=1.
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Theorem 1 (Zaheer et al.): This architecture can successfully model

any permutation invariant function, even for latent dimension N=1.

Find a ® such that
mapping from input
set X to latent
representation Y is
Injective

Assume that neural

networks @ and p are Everything can

universal function
approximators

be modelled

[ ]

define c(x): Q - N

then define  ¢(x) = 2¢W



Role of Continuity

A Continuous Function on Q
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-~ \We need to take real numbers into account!




Input Output

||__|i — H — |||. —Q— . — b — f(xq, ..., X))
N &N y
Am

d(xp)

X C RM RNxM RN R



Input Output

||__|i — H — |||. —Q— . — b — (X1, .0y Xyy)
N N v
Am

d(xp)

X C RM RNxM RN R

Theorem 2: If we want to model all permutation invariant functions,

it is sufficient and necessary that the latent dimension N is at least as
large as the maximum input set size M.
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Theorem 2: If we want to model all permutation invariant functions,

it is sufficient and necessary that the latent dimension N is at least as
large as the maximum input set size M.

Sketch of .
To prove necessity, we We show that, in order

Elreoc?efsf(s)'rt only need one function w to represent max(X), | This is not
which cant be D(X) = 2 H(x) possible with

decomposed with - N<M
N<M. We pick max(X). needs to be injective
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