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Key Takeaway
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Q. Why ResNet-type CNNs work well?

A. Hidden sparse structure promotes
good performance.

Oono and Suzuki, Jun 13th #77



Problem Setting

We consider a non-parametric regression problem:

Y =) +¢
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Problem Setting

We consider a non-parametric regression problem:

Y =) +¢

f*: True function (e.g., Holder, Barron, Besov class), £: Gaussian noise

Given N i.i.d. samples, we pick an estimator f from the hypothesis class F,

which is a set of functions realized by CNNs with a specified architecture.

Goal: Evaluate the estimation error

R(f) :=Ex |f(X) — f(X)|?



Prior Work

R(f) % infreg Il f = f° 12, +0(Mz/N)

Approximation Error Model Complexity

N: Sample size
F: Set of functions realizable by CNNs with a specified architecture
f°: True function (e.g., Holder, Barron, Besov etc.)
0(+): O-notation ignoring logarithmic terms.
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Prior Work

R(f) = infeer I| f = £° 15, +0(Mz/N)
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Contribution

ResNet-type CNNs can achieve minimax-optimal rates
without unrealistic constraints.

m # of all weights Sub-optimal @

Sparse* # of non-zero weights Optimal © Needed ®
ResNet # of all weights Optimal © Not Needed © I

* e.g., Holder case: [Yarotsuky, 17; Schmidt-Hieber, 17; Petersen & Voigtlaender, 18]
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Contribution

ResNet-type CNNs can achieve minimax-optimal rates
without unrealistic constraints.

m # of all weights Sub-optimal @

Sparse* # of non-zero weights Optimal © Needed ®
ResNet # of all weights Optimal © Not Needed © I

* e.g., Holder case: [Yarotsuky, 17; Schmidt-Hieber, 17; Petersen & Voigtlaender, 18]

Key Observation

Known optimal FNNs have block-sparse structures
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Block-sparse FNN

Forward

>
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Block-sparse FNN

Forward

>

FNN := Z

Known best approximating FNNs are block-sparse when the true function is ---

Barron [Klusowski & Barron, 18]
Holder [Yarotsky, 17; Schmidt-Hieber, 17]
Besov [Suzuki, 19].
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Block-sparse FNN to ResNet-type CNN

CNN: = FC o (Convy, +id) o -
o (COHVl + ld) oP

Known best approximating FNNs are block-sparse when the true function is ---

Holder [Yarotsky, 17; Schmidt-Hieber, 17]
Besov [Suzuki, 19].
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Block-sparse FNN to ResNet-type CNN

i
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Transform
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I Minimax Optimal I Minimax Optimal, too !

Known best approximating FNNs are block-sparse when the true function is ---

Holder [Yarotsky, 17; Schmidt-Hieber, 17]
Besov [Suzuki, 19].
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Block-sparse FNN to ResNet-type CNN

| Theorem |

For any block-sparse FNN with M blocks, there exists a ResNet-
type CNN with M residual blocks which has O(M) more
parameters and which is identical (as a function) to the FNN.

Block-sparse FNN ResNet-type CNN
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Optimality of ResNet-type CNNs

| Theorem (e.g., Holder Case) |

Suppose the true function f* is f-Holder. There exists a set of
ResNet-type CNNs F such that:
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estimation error rate (up to log factors).
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Optimality of ResNet-type CNNs
| Theorem (e.g., Holder Case) |

Suppose the true function f* is f-Holder. There exists a set of
ResNet-type CNNs F such that:

 F does NOT have sparse constraints

* the estimator f of F achieves the minimax-optimal
estimation error rate (up to log factors).

© Minimax optimal | © No discrete optimization !
Note

* Using the same strategy, we can prove that ResNet-type CNNs can achieve the same
rate as FNNs for the Barron class etc.

* We remove unrealistic constraints on channels size, too (see the paper).
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Conclusion

MPaper L|nk

ResNet-type CNNs can achieve minimax-optimal rates in several
function classes without implausible constraints.

CNN type Minimax Optimality
m # of all weights Sub-optimal ®

Sparse* # of non-zero weights Optimal © Needed ®
ResNet # of all weights Optimal © Not Needed © I
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