Poster: 13th June, Pacific Ballroom #77

个Paper Link

Approximation and Non-parametric Estimation of ResNet-type Convolutional Neural Networks

Kenta Oono^{1,2} Taiji Suzuki^{1,3}

{kenta_oono, taiji}@mist.i.u-tokyo.ac.jp
1. The University of Tokyo 2. Preferred Networks, Inc. 3. RIKEN AIP

Thirty-sixth International Conference on Machine Learning (ICML 2019) June 13th 2019, Long Beach, CA, U.S.A.

Key Takeaway

Q. Why ResNet-type CNNs work well?

Key Takeaway

Q. Why ResNet-type CNNs work well?

A. Hidden sparse structure promotes good performance.

Problem Setting

We consider a non-parametric regression problem:

$$Y = f^{\circ}(X) + \xi$$

 f° : True function (e.g., Hölder, Barron, Besov class), ξ : Gaussian noise

Problem Setting

We consider a non-parametric regression problem:

$$Y = f^{\circ}(X) + \xi$$

 f° : True function (e.g., Hölder, Barron, Besov class), ξ : Gaussian noise

Given N i.i.d. samples, we pick an estimator \hat{f} from the **hypothesis class** \mathcal{F} , which is a set of functions realized by CNNs with a specified architecture.

Problem Setting

We consider a non-parametric regression problem:

$$Y = f^{\circ}(X) + \xi$$

 f° : True function (e.g., Hölder, Barron, Besov class), ξ : Gaussian noise

Given N i.i.d. samples, we pick an estimator \hat{f} from the **hypothesis class** \mathcal{F} , which is a set of functions realized by CNNs with a specified architecture.

Goal: Evaluate the estimation error

$$\mathcal{R}(\hat{f}) := \mathbb{E}_X |\hat{f}(X) - f^{\circ}(X)|^2$$

$$\mathcal{R}\big(\hat{f}\big) \lesssim \inf_{f \in \mathcal{F}} \parallel f - f^{\circ} \parallel_{\infty}^2 + \tilde{O}(M_{\mathcal{F}}/N)$$

Approximation Error Model Complexity

N: Sample size

 \mathcal{F} : Set of functions realizable by CNNs with a specified architecture

 f° : True function (e.g., Hölder, Barron, Besov etc.)

$$\mathcal{R}(\hat{f}) \lesssim \inf_{f \in \mathcal{F}} \| f - f^{\circ} \|_{\infty}^{2} + \tilde{O}(M_{\mathcal{F}}/N)$$

Approximation Error Model Complexity

CNN type	Parameter Size $M_{\mathcal{F}}$	Minimax Optimality	Discrete Optimization
General	# of all weights	Sub-optimal 🕙	-

N: Sample size

 \mathcal{F} : Set of functions realizable by CNNs with a specified architecture

 f° : True function (e.g., Hölder, Barron, Besov etc.)

$$\mathcal{R}(\hat{f}) \lesssim \inf_{f \in \mathcal{F}} \| f - f^{\circ} \|_{\infty}^{2} + \tilde{O}(M_{\mathcal{F}}/N)$$

Approximation Error Model Complexity

CNN type	Parameter Size $M_{\mathcal{F}}$	Minimax Optimality	Discrete Optimization
General	# of all weights	Sub-optimal 🕙	-
Sparse*	# of non-zero weights	Optimal 😊	Needed 😢

N: Sample size

 \mathcal{F} : Set of functions realizable by CNNs with a specified architecture

 f° : True function (e.g., Hölder, Barron, Besov etc.)

^{*} e.g., Hölder case: [Yarotsuky, 17; Schmidt-Hieber, 17; Petersen & Voigtlaender, 18]

$$\mathcal{R}(\hat{f}) \lesssim \inf_{f \in \mathcal{F}} \| f - f^{\circ} \|_{\infty}^{2} + \tilde{O}(M_{\mathcal{F}}/N)$$

Approximation Error Model Complexity

CNN type	Parameter Size $M_{\mathcal{F}}$	Minimax Optimality	Discrete Optimization
General	# of all weights	Sub-optimal 🕙	-
Sparse*	# of non-zero weights	Optimal 😊	Needed 🕙
ResNet	# of all weights	Optimal 😊	Not Needed 😊

^{*} e.g., Hölder case: [Yarotsuky, 17; Schmidt-Hieber, 17; Petersen & Voigtlaender, 18]

N: Sample size

 \mathcal{F} : Set of functions realizable by CNNs with a specified architecture

f°: True function (e.g., Hölder, Barron, Besov etc.)

Contribution

ResNet-type CNNs can achieve minimax-optimal rates without unrealistic constraints.

CNN type	Parameter Size $M_{\mathcal{F}}$	Minimax Optimality	Discrete Optimization
General	# of all weights	Sub-optimal 🕙	-
Sparse*	# of non-zero weights	Optimal 😊	Needed 😢
ResNet	# of all weights	Optimal 😊	Not Needed 😊

^{*} e.g., Hölder case: [Yarotsuky, 17; Schmidt-Hieber, 17; Petersen & Voigtlaender, 18]

Contribution

ResNet-type CNNs can achieve minimax-optimal rates without unrealistic constraints.

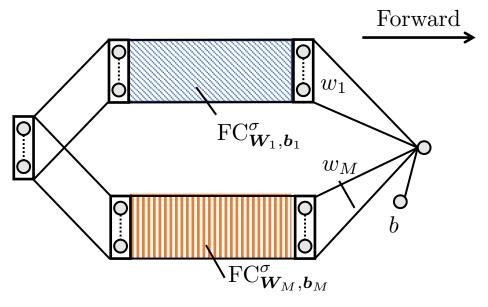
CNN type	Parameter Size $M_{\mathcal{F}}$	Minimax Optimality	Discrete Optimization
General	# of all weights	Sub-optimal 🕙	-
Sparse*	# of non-zero weights	Optimal 😊	Needed 🙈
ResNet	# of all weights	Optimal 😊	Not Needed 😊

^{*} e.g., Hölder case: [Yarotsuky, 17; Schmidt-Hieber, 17; Petersen & Voigtlaender, 18]

Key Observation

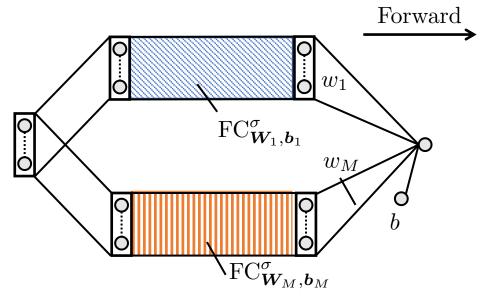
Known optimal **FNNs** have **block-sparse** structures

Block-sparse FNN



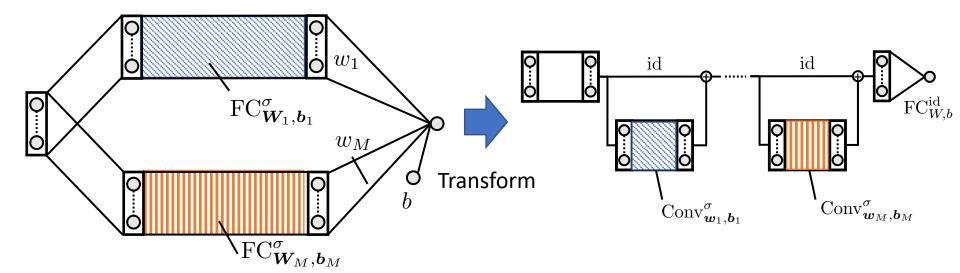
$$FNN := \sum_{m=1}^{M} w_m^T FC_m(\cdot) - b$$

Block-sparse FNN



$$FNN := \sum_{m=1}^{M} w_m^T FC_m(\cdot) - b$$

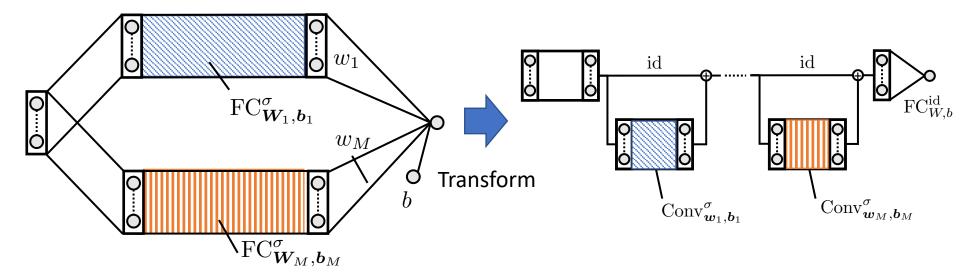
Known best approximating FNNs are **block-sparse** when the true function is ---



$$FNN := \sum_{m=1}^{M} w_m^T FC_m(\cdot) - b$$

$$CNN: = FC \circ (Conv_M + id) \circ \cdots \circ (Conv_1 + id) \circ P$$

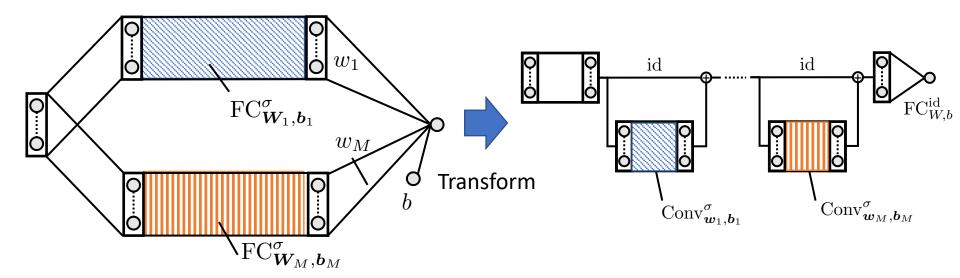
Known best approximating FNNs are block-sparse when the true function is ---



↑ Minimax Optimal

$$CNN: = FC \circ (Conv_M + id) \circ \cdots \circ (Conv_1 + id) \circ P$$

Known best approximating FNNs are **block-sparse** when the true function is ---



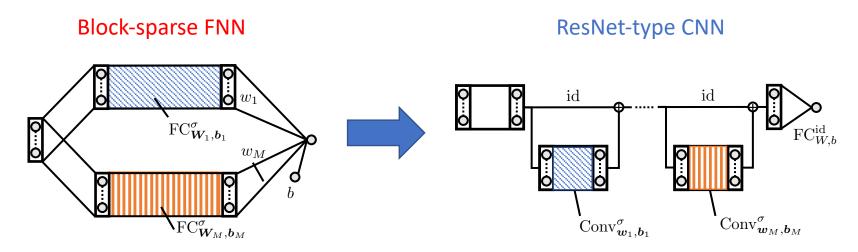
个 Minimax Optimal

↑ Minimax Optimal, too!

Known best approximating FNNs are **block-sparse** when the true function is ---

Theorem

For any block-sparse FNN with M blocks, there exists a ResNettype CNN with M residual blocks which has O(M) more parameters and which is identical (as a function) to the FNN.



Theorem (e.g., Hölder Case)

Suppose the true function f° is β -Hölder. There exists a set of ResNet-type CNNs \mathcal{F} such that:

Theorem (e.g., Hölder Case)

Suppose the true function f° is β -Hölder. There exists a set of ResNet-type CNNs \mathcal{F} such that:

- \mathcal{F} does **NOT** have sparse constraints
- the estimator \hat{f} of \mathcal{F} achieves the **minimax-optimal** estimation error rate (up to log factors).

Theorem (e.g., Hölder Case)

Suppose the true function f° is β -Hölder. There exists a set of ResNet-type CNNs \mathcal{F} such that:

- \mathcal{F} does **NOT** have sparse constraints
- the estimator \hat{f} of \mathcal{F} achieves the minimax-optimal estimation error rate (up to log factors).

Minimax optimal! No discrete optimization!

Theorem (e.g., Hölder Case)

Suppose the true function f° is β -Hölder. There exists a set of ResNet-type CNNs \mathcal{F} such that:

- \mathcal{F} does **NOT** have sparse constraints
- the estimator \hat{f} of \mathcal{F} achieves the minimax-optimal estimation error rate (up to log factors).

Minimax optimal! No discrete optimization!

Note

- Using the same strategy, we can prove that ResNet-type CNNs can achieve the same rate as FNNs for the Barron class etc.
- We remove unrealistic constraints on channels size, too (see the paper).

↑Paper Link

Conclusion

ResNet-type CNNs can achieve minimax-optimal rates in several function classes without implausible constraints.

CNN type	Parameter Size $M_{\mathcal{F}}$	Minimax Optimality	Discrete Optimization
General	# of all weights	Sub-optimal 😢	-
Sparse*	# of non-zero weights	Optimal 🙂	Needed 😢
ResNet	# of all weights	Optimal 🙂	Not Needed 😊



↑ Minimax Optimal

↑ Minimax Optimal, too!