
A Convergence Theory for Deep Learning
via Over-Parameterization

Zeyuan Allen-Zhu
MSR AI

Yuanzhi Li
Stanford

Zhao Song
UT Austin

U of Washington
Harvard

Princeton

Main Result
𝐴

𝑥

ReLU

𝑊1

ReLU

𝐵

𝑊𝐿

…

ReLU

𝐿 hidden layers
𝑊ℓ ∈ ℝ𝑚×𝑚

samples 𝑥1, … , 𝑥𝑛 ∈ ℝ𝑑

The main result is the following. Consider training 𝐿 hidden layers of a deep neural network, given 𝑛 training data points
that are non-degenerate, meaning their pairwise relative distance is at least 𝛿. Suppose the network is
overparameterized, meaning the number of neurons is polynomial in 𝑛, 𝐿 and 𝛿−1.

If data non-degenerate (e.g. norm 1 and 𝑥𝑖 − 𝑥𝑗 2
≥ 𝛿)

If overparameterized 𝑚 ≥ 𝑝𝑜𝑙𝑦 𝑛, 𝐿, 𝛿−1

Main Theorem

Main Result
𝐴

𝑥

ReLU

𝑊1

ReLU

𝐵

𝑊𝐿

…

ReLU

𝐿 hidden layers
𝑊ℓ ∈ ℝ𝑚×𝑚

samples 𝑥1, … , 𝑥𝑛 ∈ ℝ𝑑

If data non-degenerate (e.g. norm 1 and 𝑥𝑖 − 𝑥𝑗 2
≥ 𝛿)

If overparameterized 𝑚 ≥ 𝑝𝑜𝑙𝑦 𝑛, 𝐿, 𝛿−1

Then, SGD finds training global minima in

𝑇 =
𝑝𝑜𝑙𝑦 𝑛, 𝐿

𝛿2
⋅ log

1

𝜀
iterations for ℓ2-regression

Then, we proved stochastic gradient descent can find global minima in polynomial time by training only hidden layers.

Main Theorem

Main Result
𝐴

𝑥

ReLU

𝑊1

ReLU

𝐵

𝑊𝐿

…

ReLU

𝐿 hidden layers
𝑊ℓ ∈ ℝ𝑚×𝑚

samples 𝑥1, … , 𝑥𝑛 ∈ ℝ𝑑

If data non-degenerate (e.g. norm 1 and 𝑥𝑖 − 𝑥𝑗 2
≥ 𝛿)

If overparameterized 𝑚 ≥ 𝑝𝑜𝑙𝑦 𝑛, 𝐿, 𝛿−1

Then, SGD finds training global minima in

𝑇 =
𝑝𝑜𝑙𝑦 𝑛, 𝐿

𝛿2
⋅ log

1

𝜀
iterations for ℓ2-regression

Similar results also hold for other losses and other network architectures such as ResNet and CNN.
These can be found in the paper.

Main Theorem

In paper:
• also for other smooth losses (cross-entropy, etc)
• also for other architectures (ResNet, CNN, etc)

Key Message 1
𝐴

𝑥

ReLU

𝑊1

ReLU

𝐵

𝑊𝐿

…

ReLU

If data non-degenerate (e.g. norm 1 and 𝑥𝑖 − 𝑥𝑗 2
≥ 𝛿)

If overparameterized 𝑚 ≥ 𝑝𝑜𝑙𝑦 𝑛, 𝐿, 𝛿−1

Then, SGD finds training global minima in

𝑇 =
𝑝𝑜𝑙𝑦 𝑛, 𝐿

𝛿2
⋅ log

1

𝜀
iterations for ℓ2-regression

Main Theorem

Our first key message is the following. Our theorem is obtained by training
with respect to hidden layers, where prior work [Daniely, NeurIPS 2017]
studies training essentially only the last layer, which is an easy convex problem.

samples 𝑥1, … , 𝑥𝑛 ∈ ℝ𝑑

Key Message 2: poly(L)
𝐴

𝑥

ReLU

𝑊1

ReLU

𝐵

𝑊𝐿

…

ReLU

If data non-degenerate (e.g. norm 1 and 𝑥𝑖 − 𝑥𝑗 2
≥ 𝛿)

If overparameterized 𝑚 ≥ 𝑝𝑜𝑙𝑦 𝑛, 𝐿, 𝛿−1

Then, SGD finds training global minima in

𝑇 =
𝑝𝑜𝑙𝑦 𝑛, 𝐿

𝛿2
⋅ log

1

𝜀
iterations for ℓ2-regression

Main Theorem

Our second key message is the following. We prove polynomial
dependence on the depth 𝐿. In contrast,
• The independent work [Du et al. ICML 19] needs exponential time in 𝐿

• Prior work [Daniely, NeurIPS 17] for training last layer also needs 𝑒𝑂(𝐿)

Key Message 2: poly(L)
𝐴

𝑥

ReLU

𝑊1

ReLU

𝐵

𝑊𝐿

…

ReLU

If data non-degenerate (e.g. norm 1 and 𝑥𝑖 − 𝑥𝑗 2
≥ 𝛿)

If overparameterized 𝑚 ≥ 𝑝𝑜𝑙𝑦 𝑛, 𝐿, 𝛿−1

Then, SGD finds training global minima in

𝑇 =
𝑝𝑜𝑙𝑦 𝑛, 𝐿

𝛿2
⋅ log

1

𝜀
iterations for ℓ2-regression

Main Theorem

Intrinsically, our polynomial bound is possible because ReLU prevents
exponential gradient explosion/vanishing, in a provable sense!

(for a sufficiently large region near random initialization)

Key Message 2: poly(L)
𝐴

𝑥

ReLU

𝑊1

ReLU

𝐵

𝑊𝐿

…

ReLU

If data non-degenerate (e.g. norm 1 and 𝑥𝑖 − 𝑥𝑗 2
≥ 𝛿)

If overparameterized 𝑚 ≥ 𝑝𝑜𝑙𝑦 𝑛, 𝐿, 𝛿−1

Then, SGD finds training global minima in

𝑇 =
𝑝𝑜𝑙𝑦 𝑛, 𝐿

𝛿2
⋅ log

1

𝜀
iterations for ℓ2-regression

Main Theorem

Intrinsically, our polynomial bound is possible because ReLU prevents
exponential gradient explosion/vanishing, in a provable sense!

(for a sufficiently large region near random initialization)

In contrast, getting 𝑒𝑂 𝐿 is almost trivial: each hidden weight matrix 𝑊ℓ

has spectral norm 2, so overall 2𝐿. The hard part is proving 𝑝𝑜𝑙𝑦(𝐿).

Key Message 3: almost-convex geometry
𝐴

𝑥

ReLU

𝑊1

ReLU

𝐵

𝑊𝐿

…

ReLU

The third key message is the following. We prove in the paper, for a sufficiently large neighborhood of the random initialization, the training
objective is almost convex.

Key Message 3: almost-convex geometry
𝐴

𝑥

ReLU

𝑊1

ReLU

𝐵

𝑊𝐿

…

ReLU

This means, if the objective is large, then gradient is large.

If loss is large, then gradient is large:

∇𝐹 𝑊
𝐹

2
≥ 𝐹 𝑊 ⋅ 𝛿/𝑛2

Main Lemma

(after appropriate normalization)

Key Message 3: almost-convex geometry
𝐴

𝑥

ReLU

𝑊1

ReLU

𝐵

𝑊𝐿

…

ReLU

If loss is large, then gradient is large:

∇𝐹 𝑊
𝐹

2
≥ 𝐹 𝑊 ⋅ 𝛿/𝑛2

Main Lemma

Objective is semi-smooth:

𝐹 𝑊 +𝑊′ = 𝐹 𝑊 + ∇𝐹 𝑊 ,𝑊′ ± 𝑝𝑜𝑙𝑦(𝑛, 𝐿) ⋅ 𝑊′

𝐹

Main Lemma

Also, the objective is sufficiently smooth, meaning that if you move in the negative gradient direction, the objective value can be sufficiently
decreased.

Key Message 3: almost-convex geometry
𝐴

𝑥

ReLU

𝑊1

ReLU

𝐵

𝑊𝐿

…

ReLU

We verified this is true also on real data. Goodfellow et al. [ICLR 2015] also observed this phenomenon but a proof was not known.

CIFAR10/100
VGG19/ResNet32/ResNet110

If loss is large, then gradient is large:

∇𝐹 𝑊
𝐹

2
≥ 𝐹 𝑊 ⋅ 𝛿/𝑛2

Main Lemma

Objective is semi-smooth:

𝐹 𝑊 +𝑊′ = 𝐹 𝑊 + ∇𝐹 𝑊 ,𝑊′ ± 𝑝𝑜𝑙𝑦(𝑛, 𝐿) ⋅ 𝑊′

𝐹

Main Lemma

Key Message 3: almost-convex geometry
𝐴

𝑥

ReLU

𝑊1

ReLU

𝐵

𝑊𝐿

…

ReLU

These two main lemmas together imply our main theorem.

CIFAR10/100
VGG19/ResNet32/ResNet110

SGD finds global
minima in

polynomial time

Main Theorem

If loss is large, then gradient is large:

∇𝐹 𝑊
𝐹

2
≥ 𝐹 𝑊 ⋅ 𝛿/𝑛2

Main Lemma

Objective is semi-smooth:

𝐹 𝑊 +𝑊′ = 𝐹 𝑊 + ∇𝐹 𝑊 ,𝑊′ ± 𝑝𝑜𝑙𝑦(𝑛, 𝐿) ⋅ 𝑊′

𝐹

Main Lemma

Equivalent View: neural tangent kernel
𝐴

𝑥

ReLU

𝑊1

ReLU

𝐵

𝑊𝐿

…

ReLU

If 𝑚 ≥ 𝑝𝑜𝑙𝑦 𝑛, 𝐿 , for a sufficiently large neighborhood of the random
initialization, neural networks behave like Neural Tangent Kernel (NTK).

In fact… we proved

Finally, let us take an alternative view.
If one goes into the paper, we proved the following. If 𝑚, the number of neurons, is polynomially large, then for a sufficiently large
neighborhood of the random initialization, neural networks behave nearly identical to the so-called neural tangent kernels, or NTK.

Equivalent View: neural tangent kernel
𝐴

𝑥

ReLU

𝑊1

ReLU

𝐵

𝑊𝐿

…

ReLU

If 𝑚 ≥ 𝑝𝑜𝑙𝑦 𝑛, 𝐿 , for a sufficiently large neighborhood of the random
initialization, neural networks behave like Neural Tangent Kernel (NTK).

• ∇𝐹 𝑊 = 1 ±
1

𝑚
⋅ feature space of NTK

• 𝐹 𝑊∗ = 𝐹𝑁𝑇𝐾 𝑊∗ ±
1

𝑚1/6

In fact… we proved

Specifically, this means two things. The gradient behaves like NTK, and the objective behaves like NTK.

Conclusion

If 𝑚 ≥ 𝑝𝑜𝑙𝑦 𝑛, 𝐿 , within certain initialization and learning rate regime,

Over-parameterized deep networks = Neural Tangent Kernel (NTK).

⟹ networks essentially convex and smooth ⟹ training is EASY

We proved

In other words, we proved that within certain parameter regime, over-parameterized deep neural networks behave nearly the same as NTK.
Therefore, the training task is essentially convex, so training is easy.

Conclusion

If 𝑚 ≥ 𝑝𝑜𝑙𝑦 𝑛, 𝐿 , within certain initialization and learning rate regime,

Over-parameterized deep networks = Neural Tangent Kernel (NTK).

⟹ networks essentially convex and smooth ⟹ training is EASY

We proved

Note this is not true for other learning rate regimes, and neural networks can be provably more powerful than NTK, see our follow-up work.

Author Note: for other regimes, neural networks provably more powerful than NTK

See [A-L, 1905.10337], "What Can ResNet Learn Efficiently, Going Beyond Kernels?“

Conclusion

If 𝑚 ≥ 𝑝𝑜𝑙𝑦 𝑛, 𝐿 , within certain initialization and learning rate regime,

Over-parameterized deep networks = Neural Tangent Kernel (NTK).

⟹ networks essentially convex and smooth ⟹ training is EASY

We proved

We emphasize again that, prior work studying the relationship to NTK either

requires 𝑚 = ∞ or 𝑚 ≥ 𝑒Ω 𝐿 . Our result is polynomial in the depth 𝑳.

Conclusion

If 𝑚 ≥ 𝑝𝑜𝑙𝑦 𝑛, 𝐿 , within certain initialization and learning rate regime,

Over-parameterized deep networks = Neural Tangent Kernel (NTK).

⟹ networks essentially convex and smooth ⟹ training is EASY

We proved

We emphasize again that, prior work studying the relationship to NTK either

requires 𝑚 = ∞ or 𝑚 ≥ 𝑒Ω 𝐿 . Our result is polynomial in the depth 𝑳.

