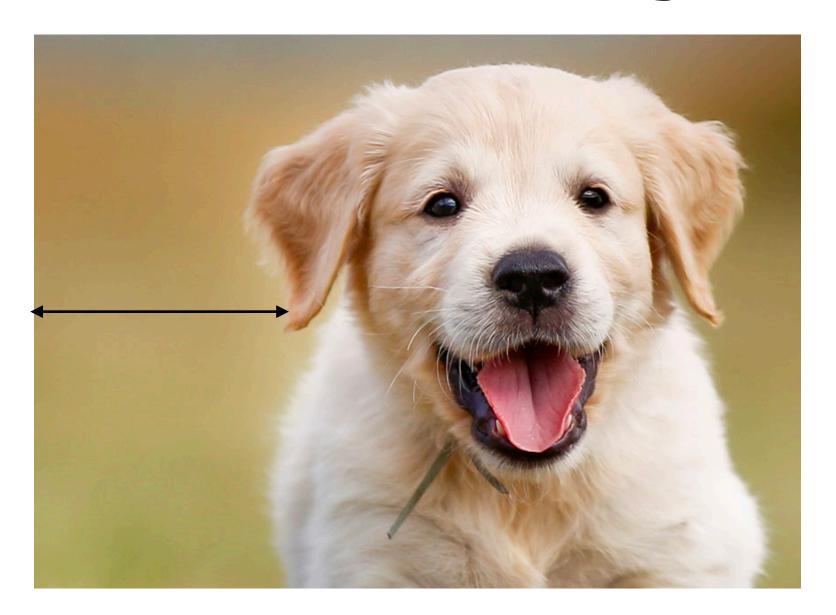


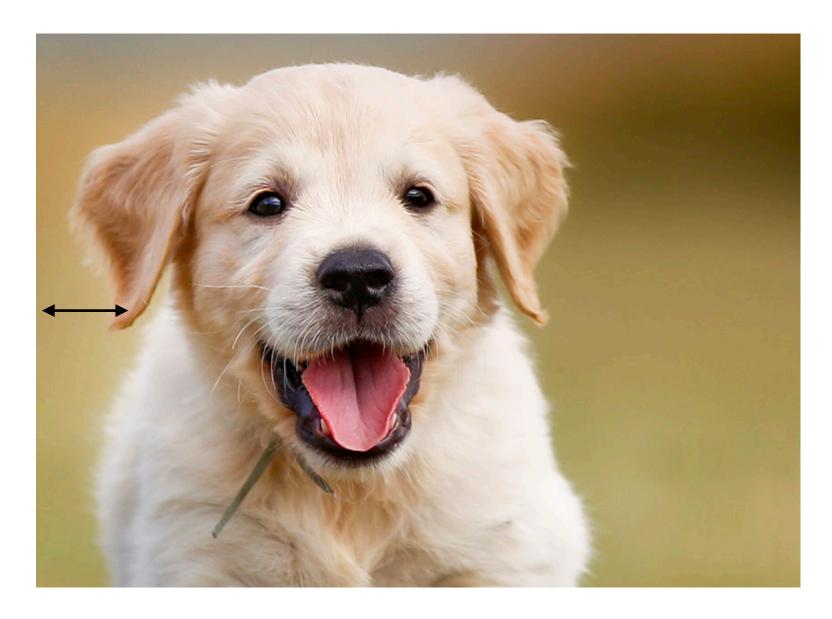
Learning to Convolve: A Generalized Weight-Tying Approach

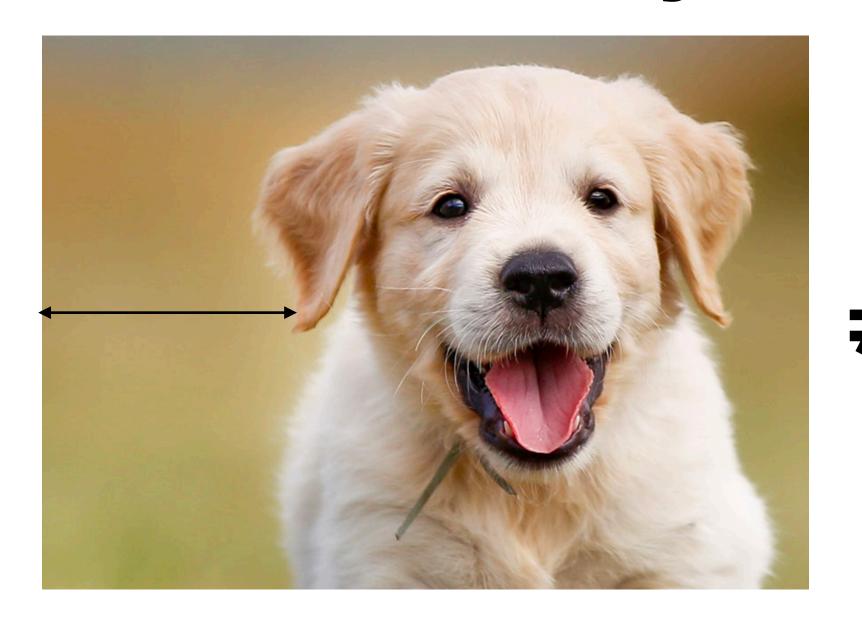
Nichita Diaconu* & Daniel Worrall*

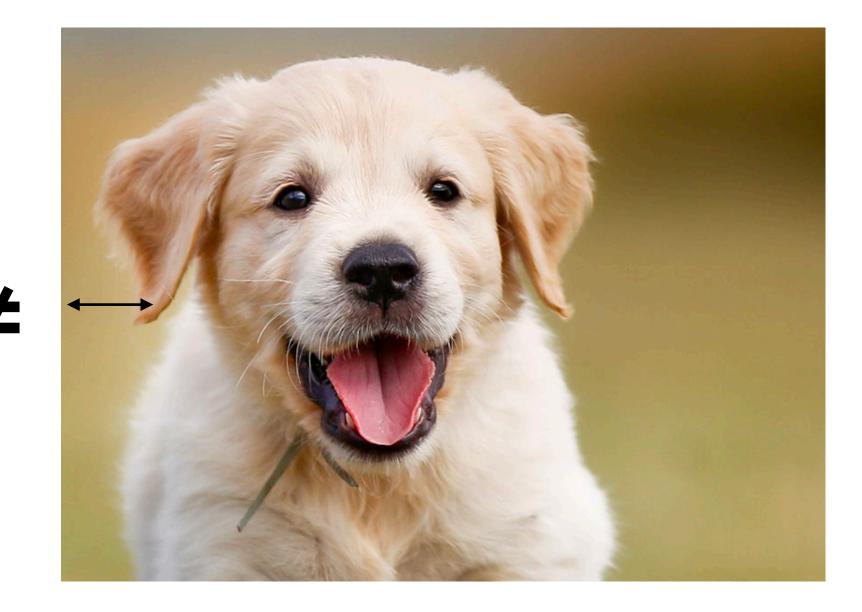
Philips Lab c AMLAB, University of Amsterdam

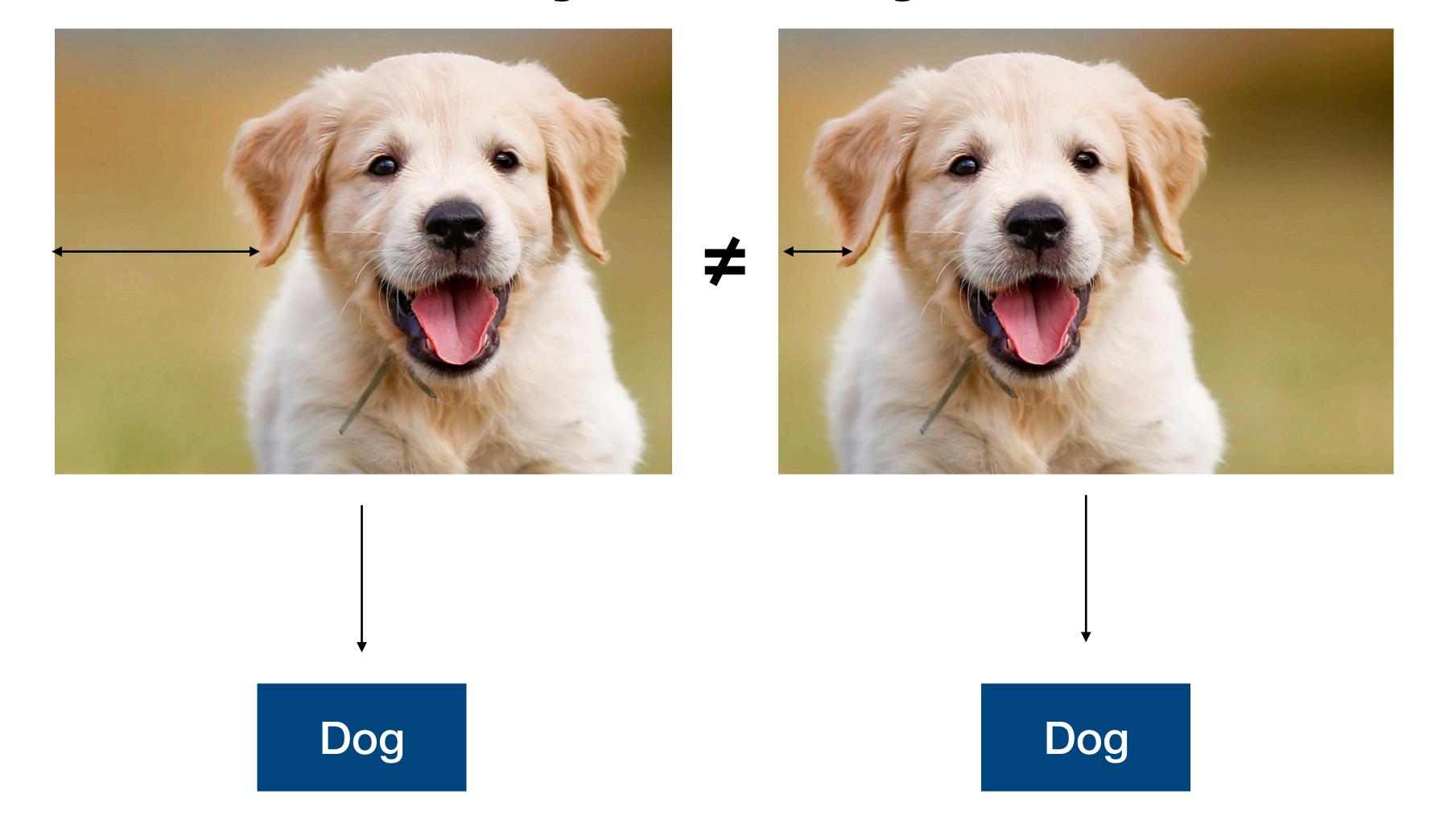
ICML 2019

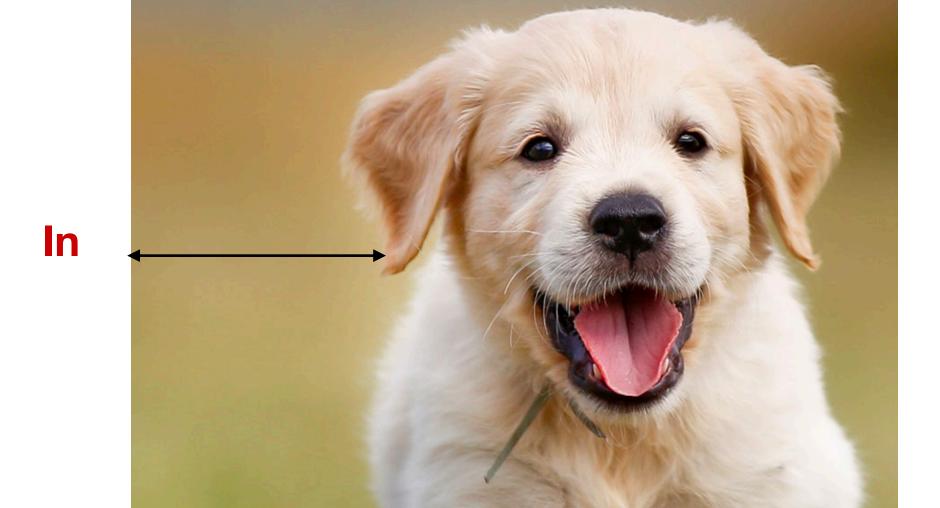


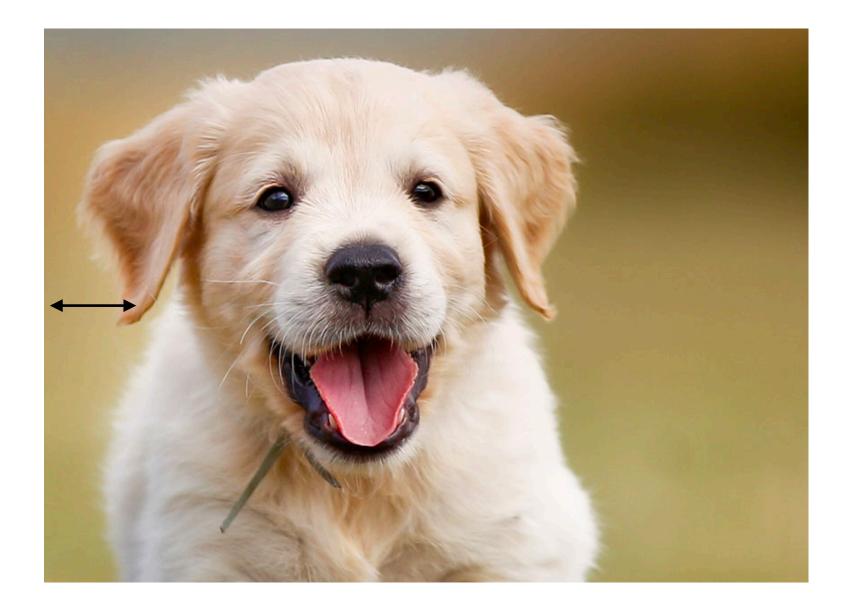




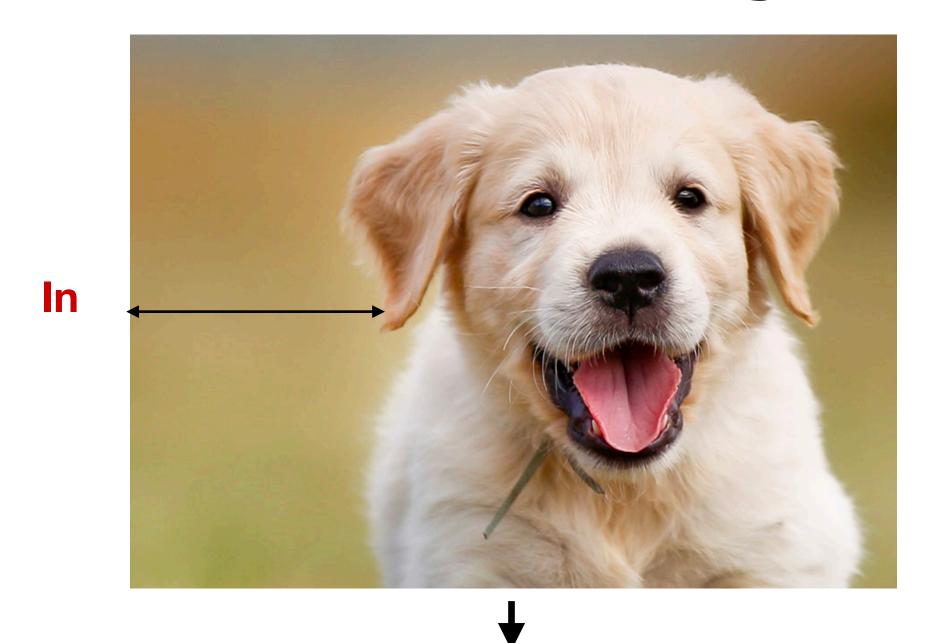


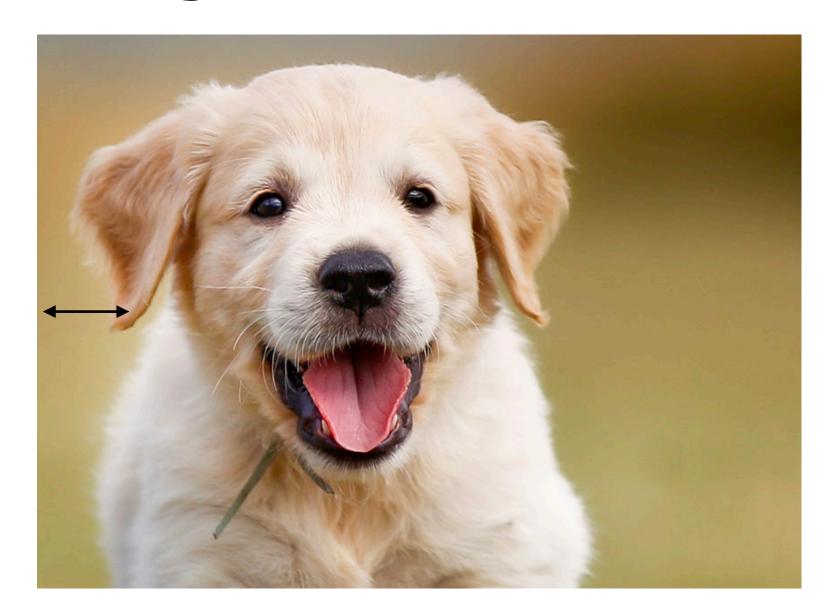


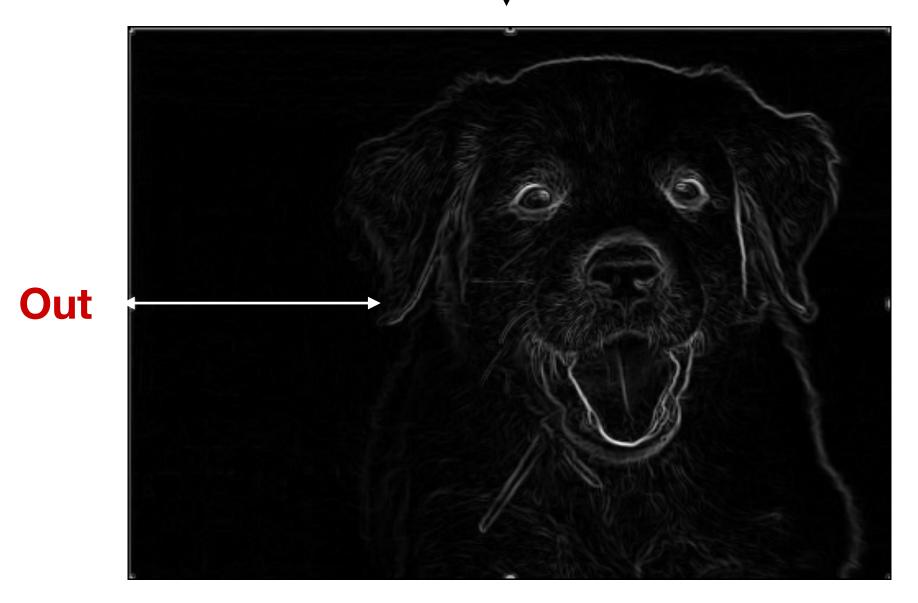


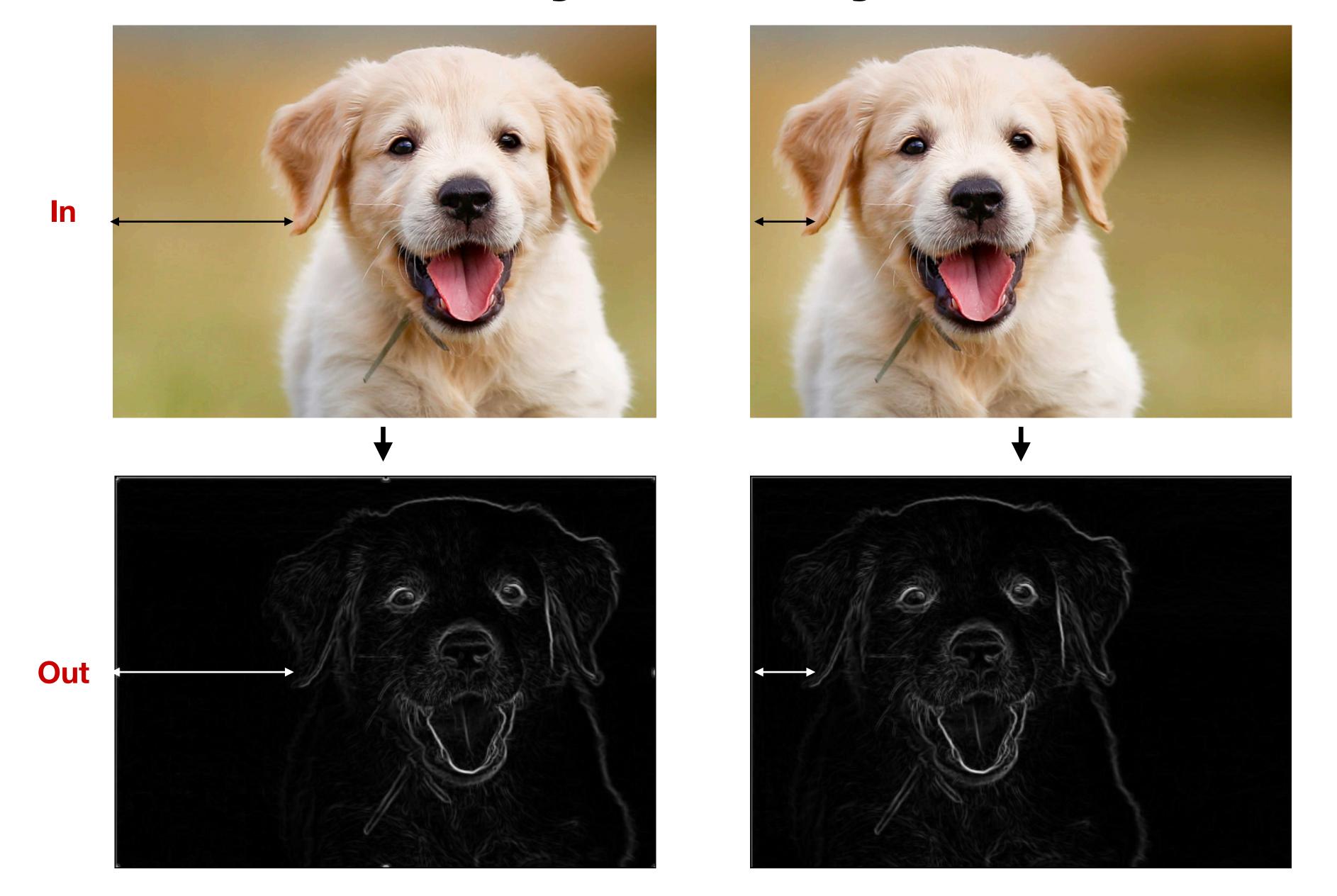


Out









Standard convolution

$$[f \star \psi](g) = \sum_{x \in \mathcal{X}} f(x)\psi(x - g)$$

e.g. LeCun et al. (1998)

Standard convolution

Input

$$[f \star \psi](g) = \sum_{x \in \mathcal{X}} f(x) \psi(x - g)$$

e.g. LeCun et al. (1998)

Standard convolution

Input

Filter

$$[f \star \psi](g) = \sum_{x \in \mathcal{X}} f(x)\psi(x - g)$$

e.g. LeCun et al. (1998)

Standard convolution

Input

Filter

$$[f \star \psi](g) = \sum_{x \in \mathcal{X}} f(x)\psi(x - g)$$

e.g. LeCun et al. (1998)

Group convolution

$$[f \star \psi](g) = \sum_{x \in \mathcal{X}} f(x) \mathcal{L}_g[\psi](x)$$

e.g. Cohen & Welling (2015)

Standard convolution

Input

Filter

$$[f \star \psi](g) = \sum_{x \in \mathcal{X}} f(x)\psi(x - g)$$

e.g. LeCun et al. (1998)

Group convolution

$$[f \star \psi](g) = \sum_{x \in \mathcal{X}} f(x) \mathcal{L}_g[\psi](x)$$

$$\mathbf{g}\text{-transformed filter}$$

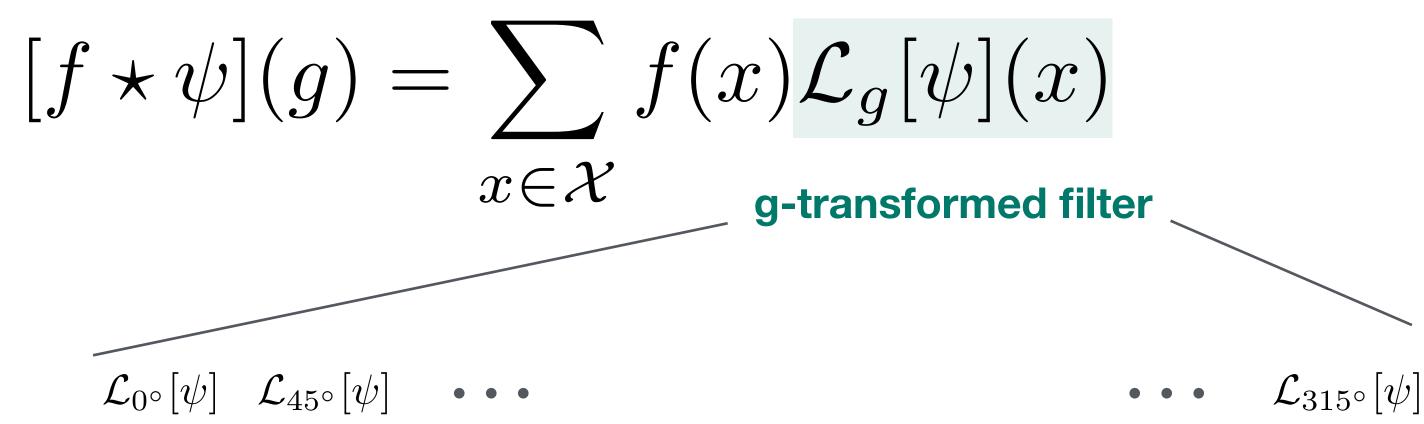
e.g. Cohen & Welling (2015)

Group Convolutions

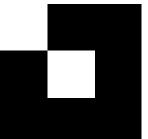
$$[f \star \psi](g) = \sum_{x \in \mathcal{X}} f(x) \mathcal{L}_g[\psi](x)$$
 g-transformed filter

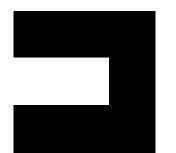
Group Convolutions

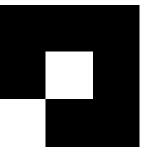
Group convolution

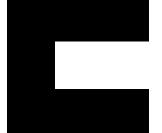


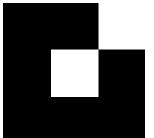
Nearest-neighbor









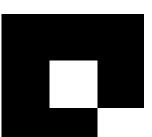


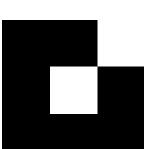
Group Convolutions

Group convolution

$$[f \star \psi](g) = \sum_{x \in \mathcal{X}} f(x) \mathcal{L}_g[\psi](x)$$
 g-transformed filter

 $\mathcal{L}_{0^{\circ}}[\psi]$ $\mathcal{L}_{45^{\circ}}[\psi]$





 $\mathcal{L}_{315^{\circ}}[\psi]$

Bilinear

Nearest-neighbor

Unitary Group Convolutions

$$[f \star \psi](g) = \sum_{x \in \mathcal{X}} f(x) \mathcal{L}_g[\psi](x)$$

Unitary Group Convolutions

Group convolution

$$[f \star \psi](g) = \sum_{x \in \mathcal{X}} f(x) \mathcal{L}_g[\psi](x)$$

Unitarity

$$\sum_{x \in \mathcal{X}} \mathcal{L}_g[f](x) \mathcal{L}_g[\psi](x) = \sum_{x \in \mathcal{X}} f(x) \psi(x)$$

Unitary Group Convolutions

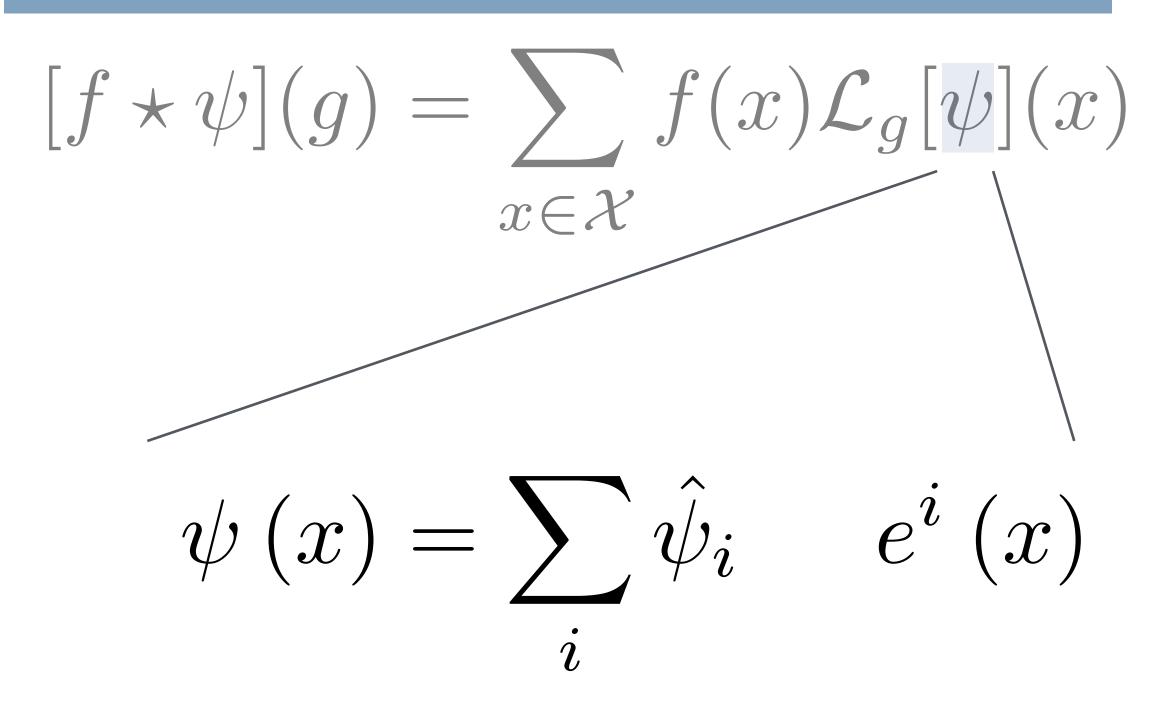
Group convolution

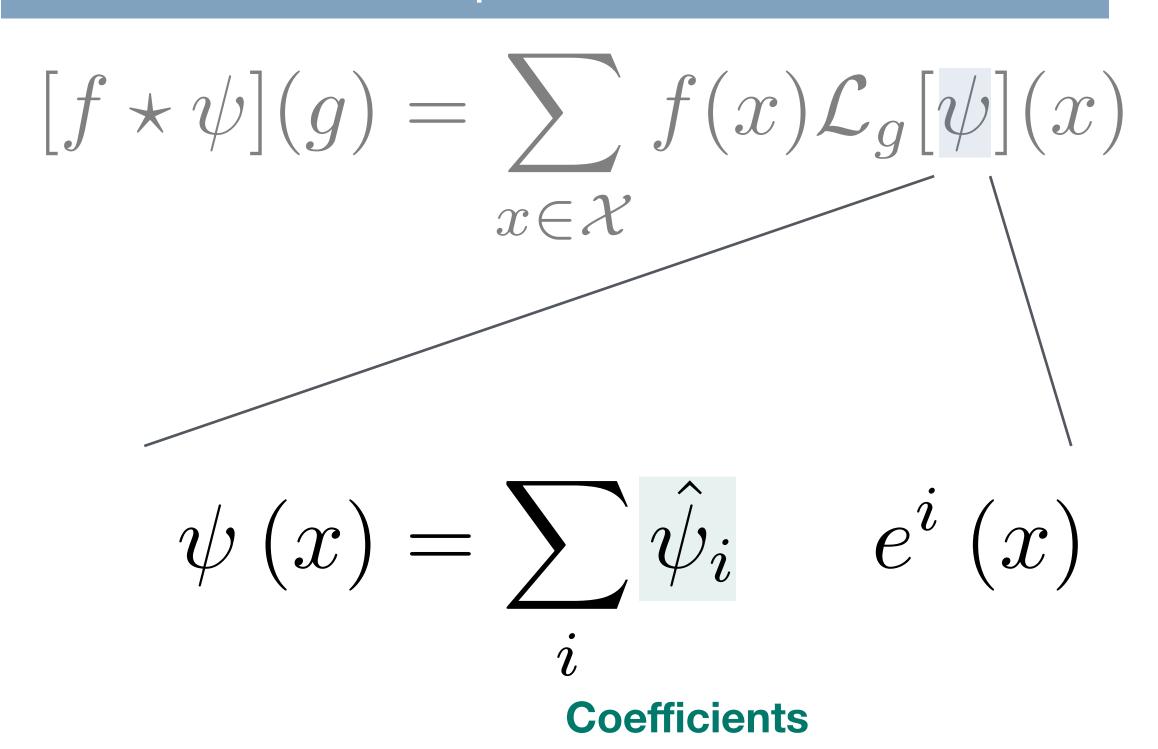
$$[f \star \psi](g) = \sum_{x \in \mathcal{X}} f(x) \mathcal{L}_g[\psi](x)$$

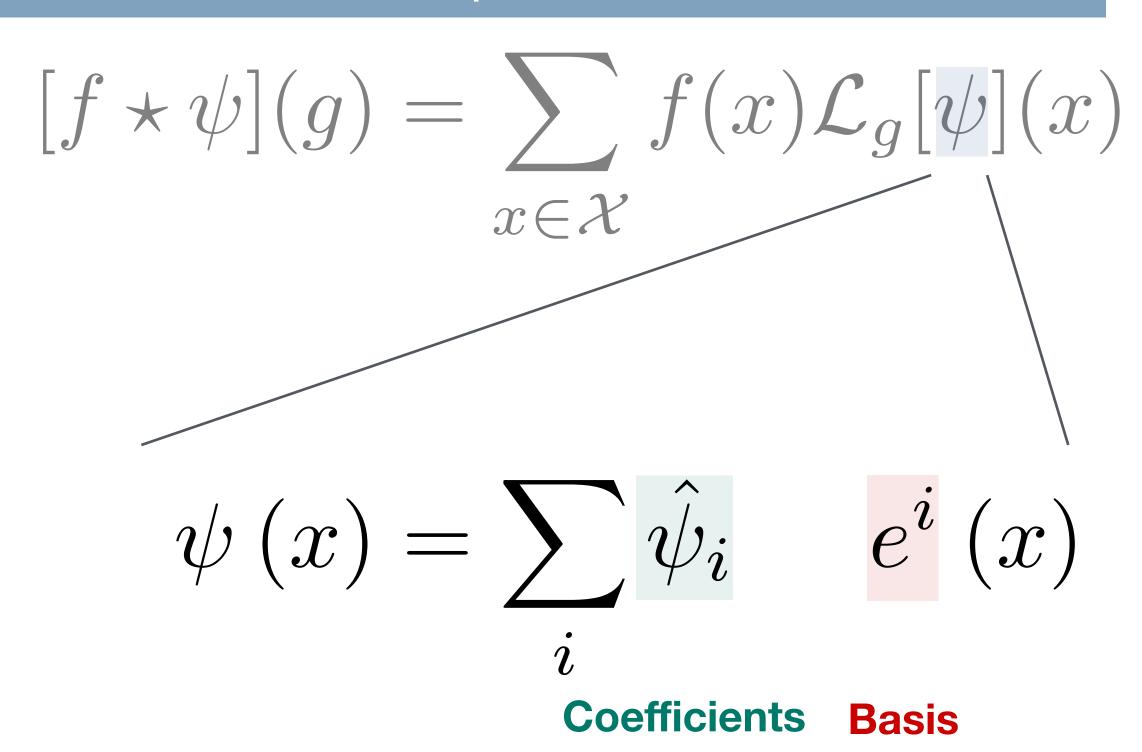
Unitarity

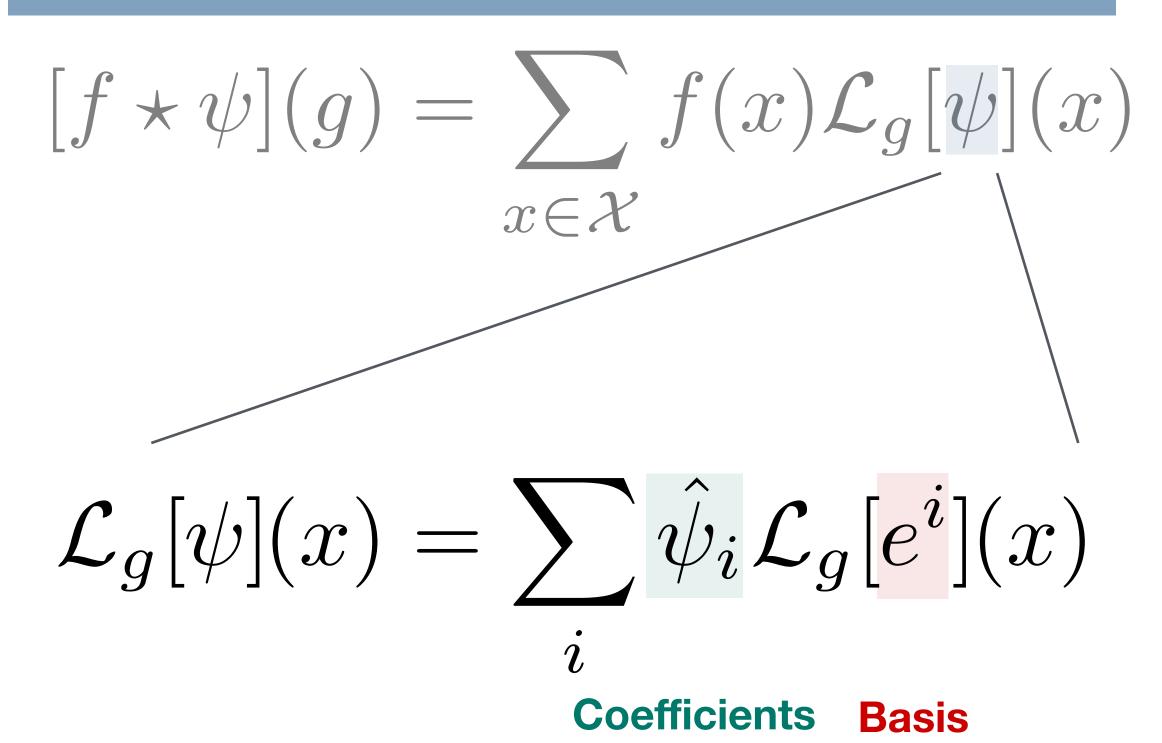
$$\sum_{x \in \mathcal{X}} \mathcal{L}_g[f](x) \mathcal{L}_g[\psi](x) = \sum_{x \in \mathcal{X}} f(x) \psi(x)$$

$$[f \star \psi](g) = \sum_{x \in \mathcal{X}} f(x) \mathcal{L}_g[\psi](x)$$



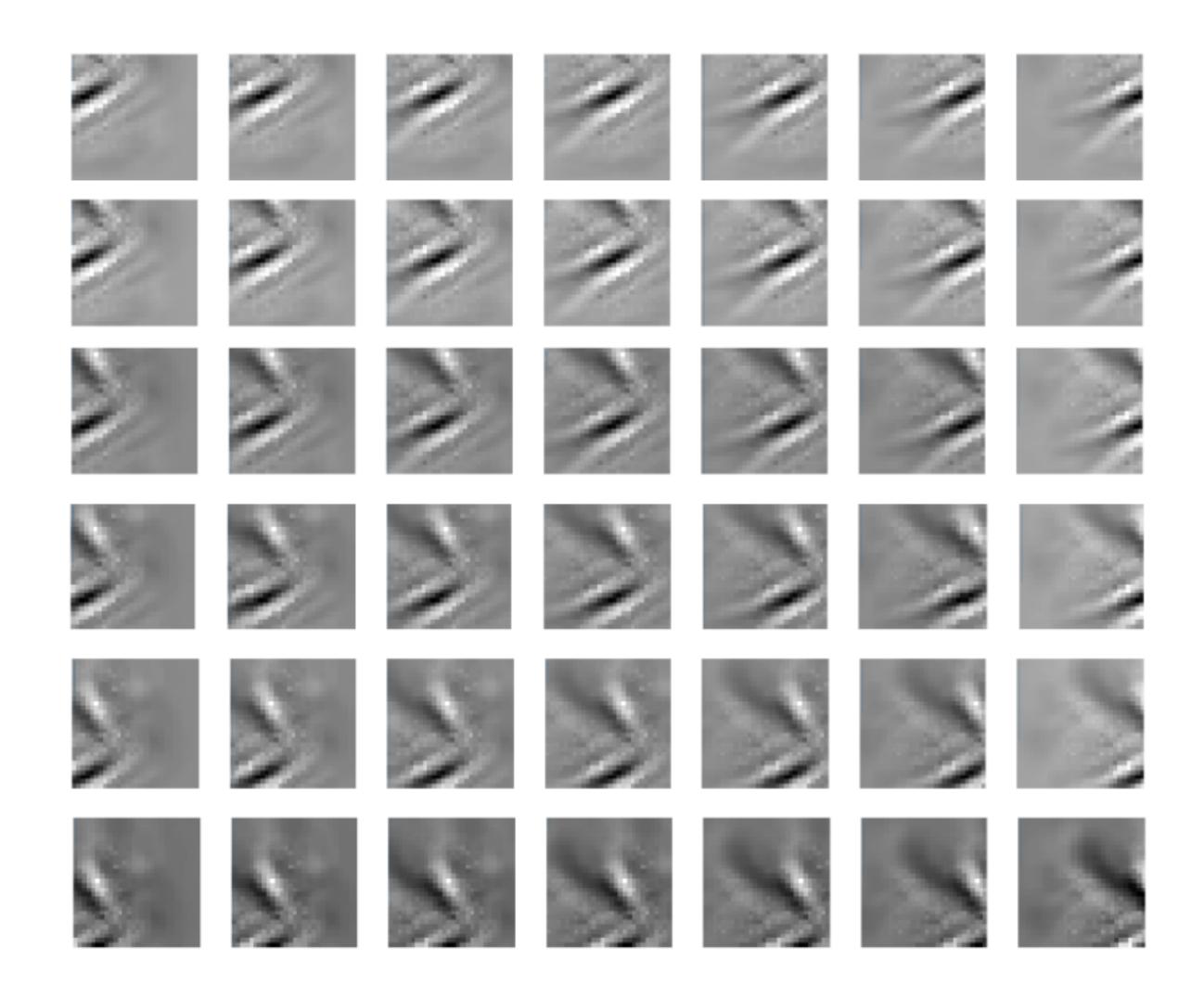






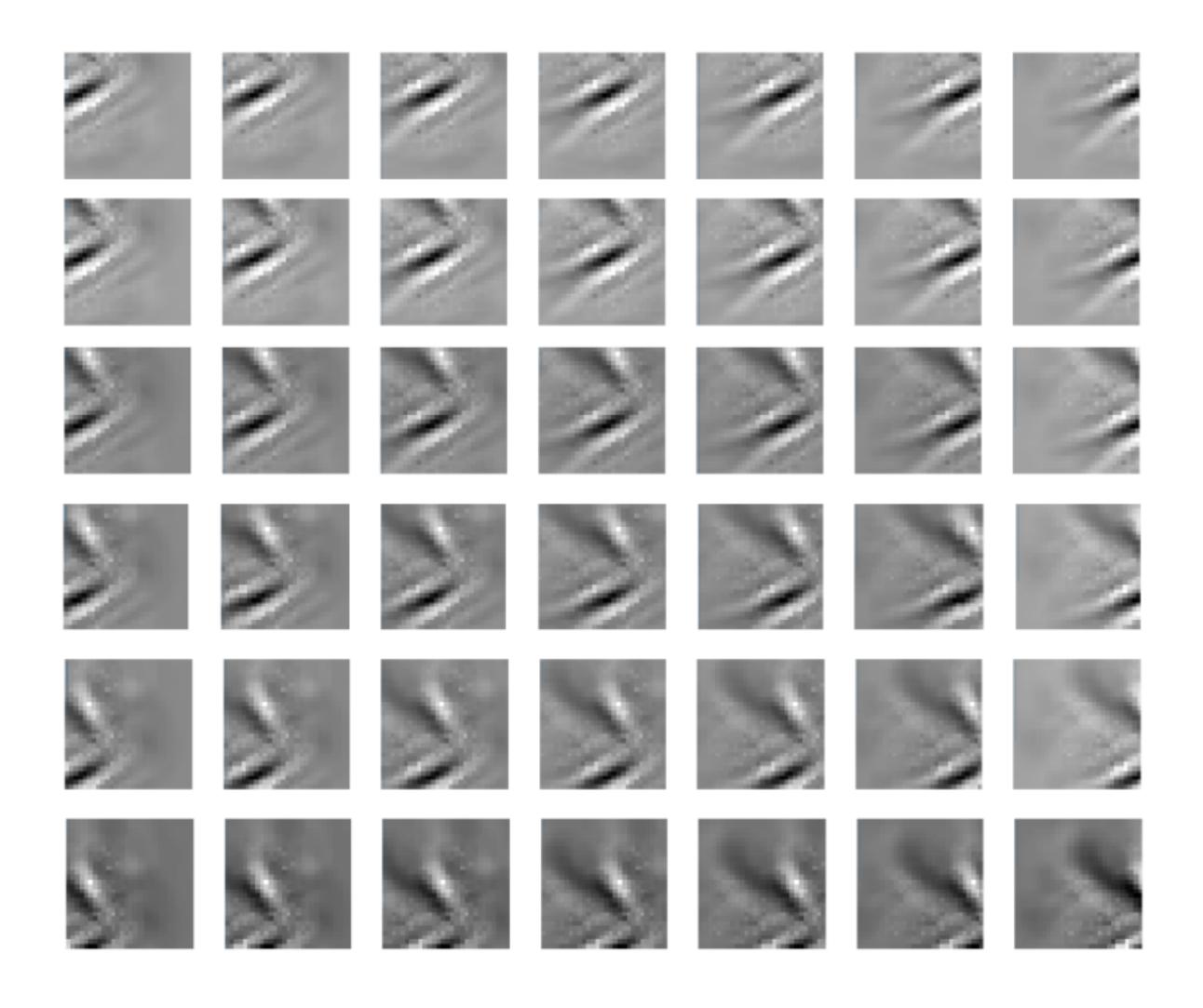
Experiments: MLP → CNN

Experiments: MLP → CNN



With thanks to Nichita Diaconu, Andrei Pauliuc, Daniel Maaskant, and Jens Dudink

Experiments: MLP → CNN



MNIST Test Error

MLP: 1.4%

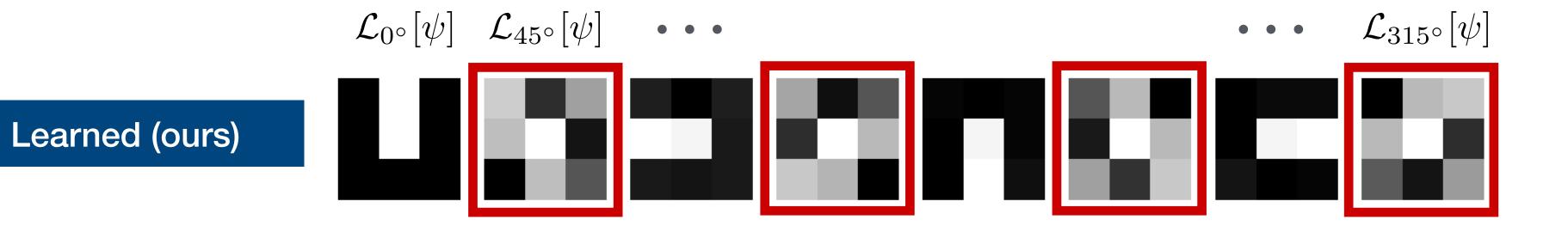
Us: 0.7%

CNN: 0.5%

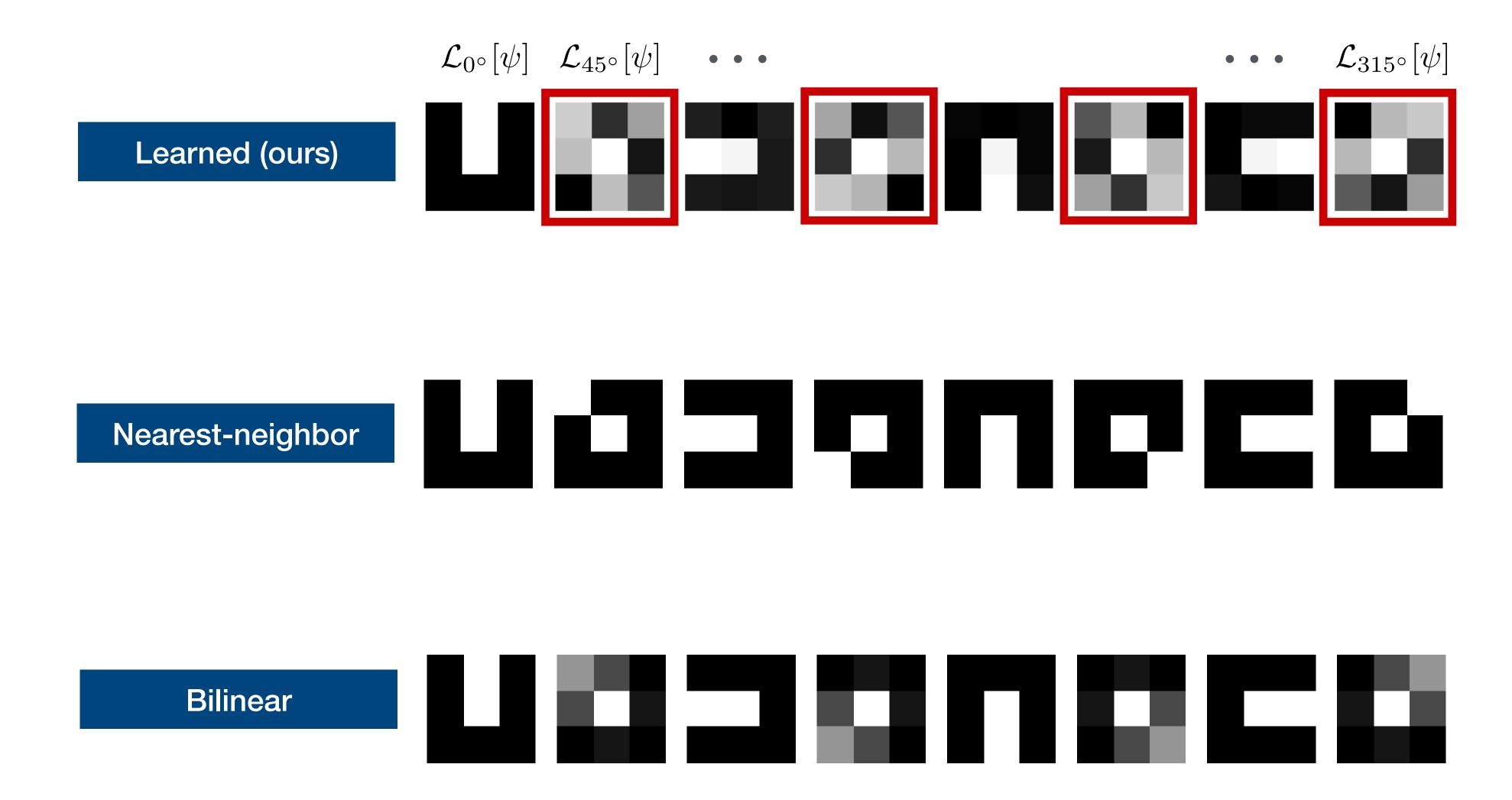
Learned (ours)

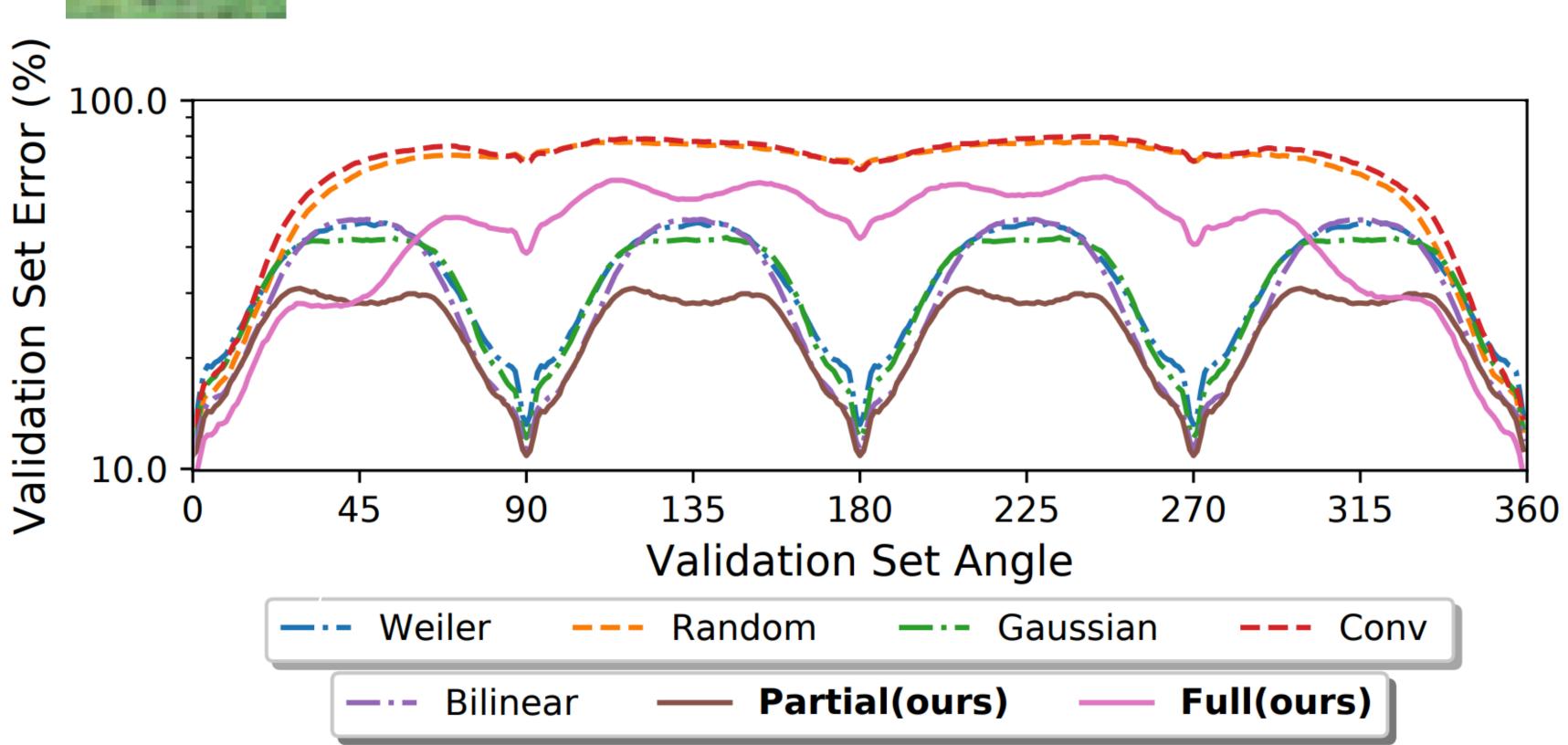
Experiments: Filters

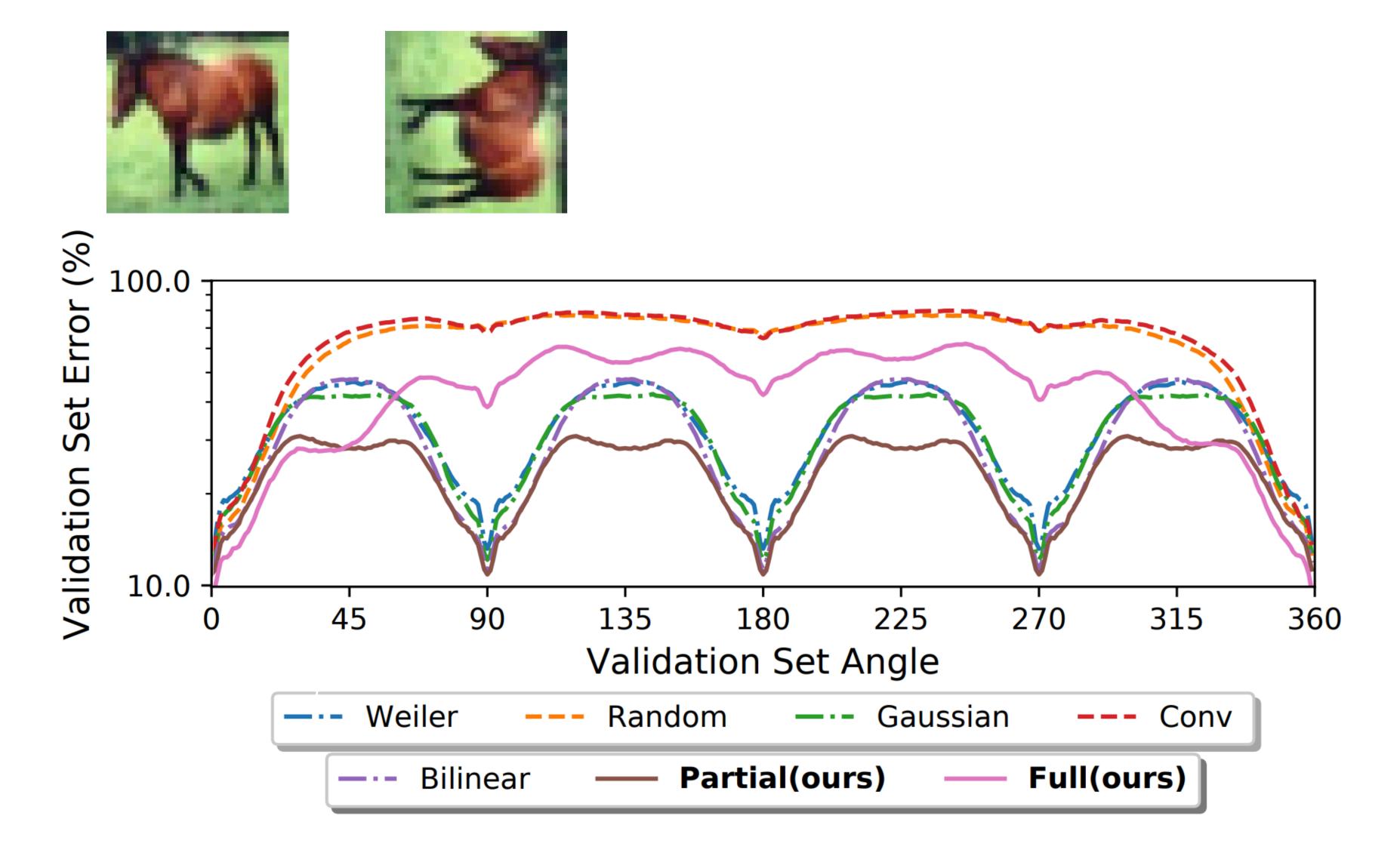
Experiments: Filters

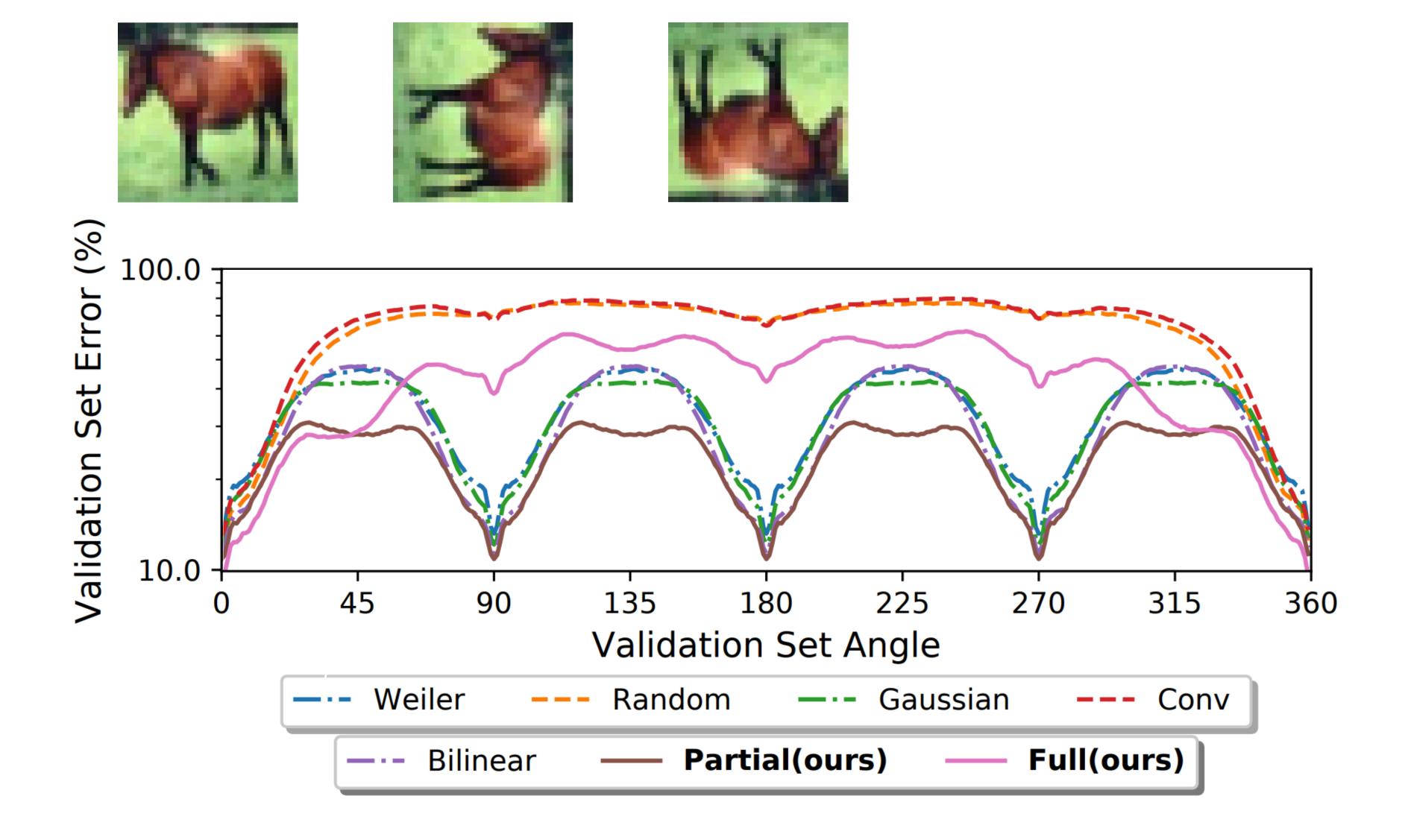


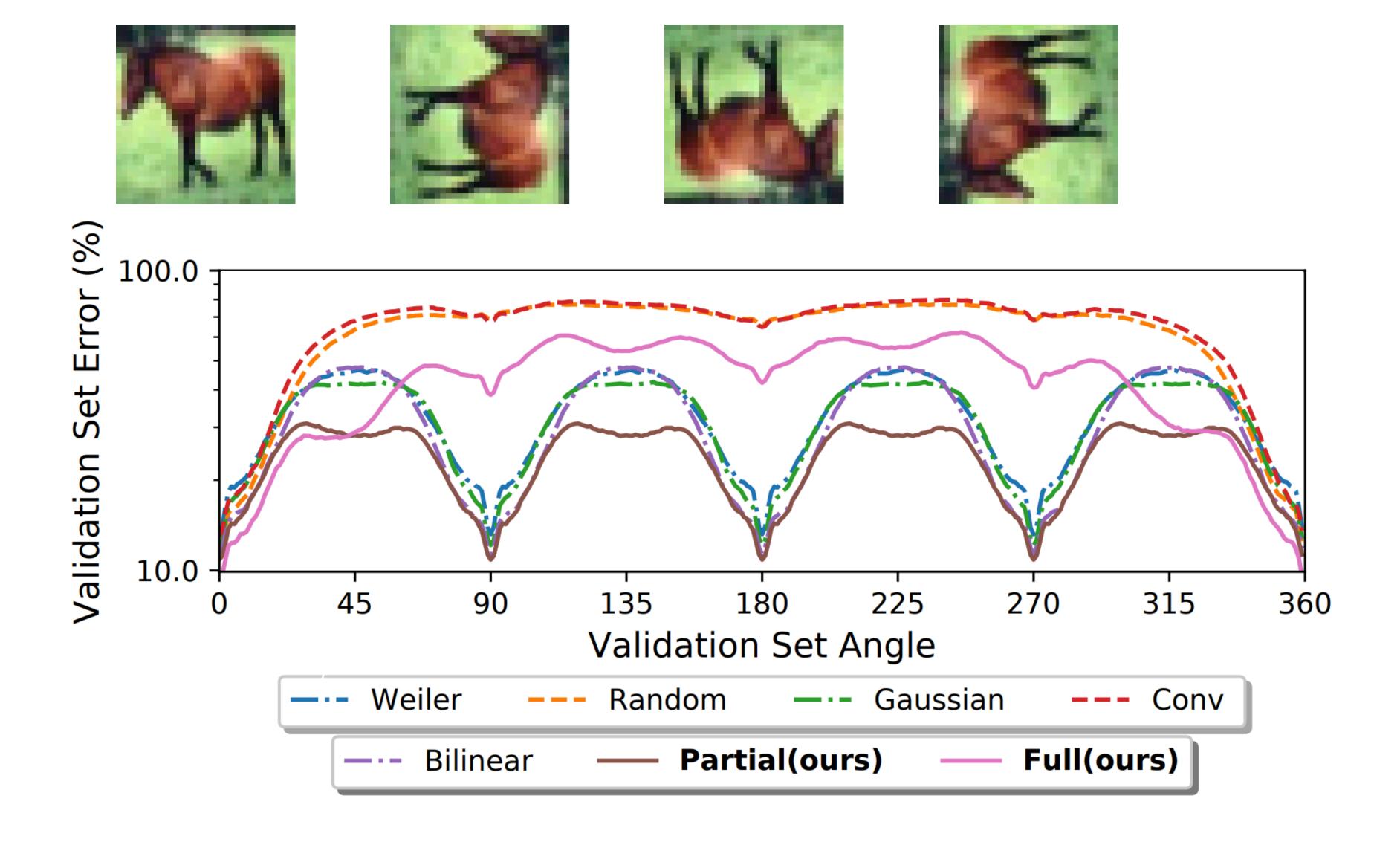
Experiments: Filters

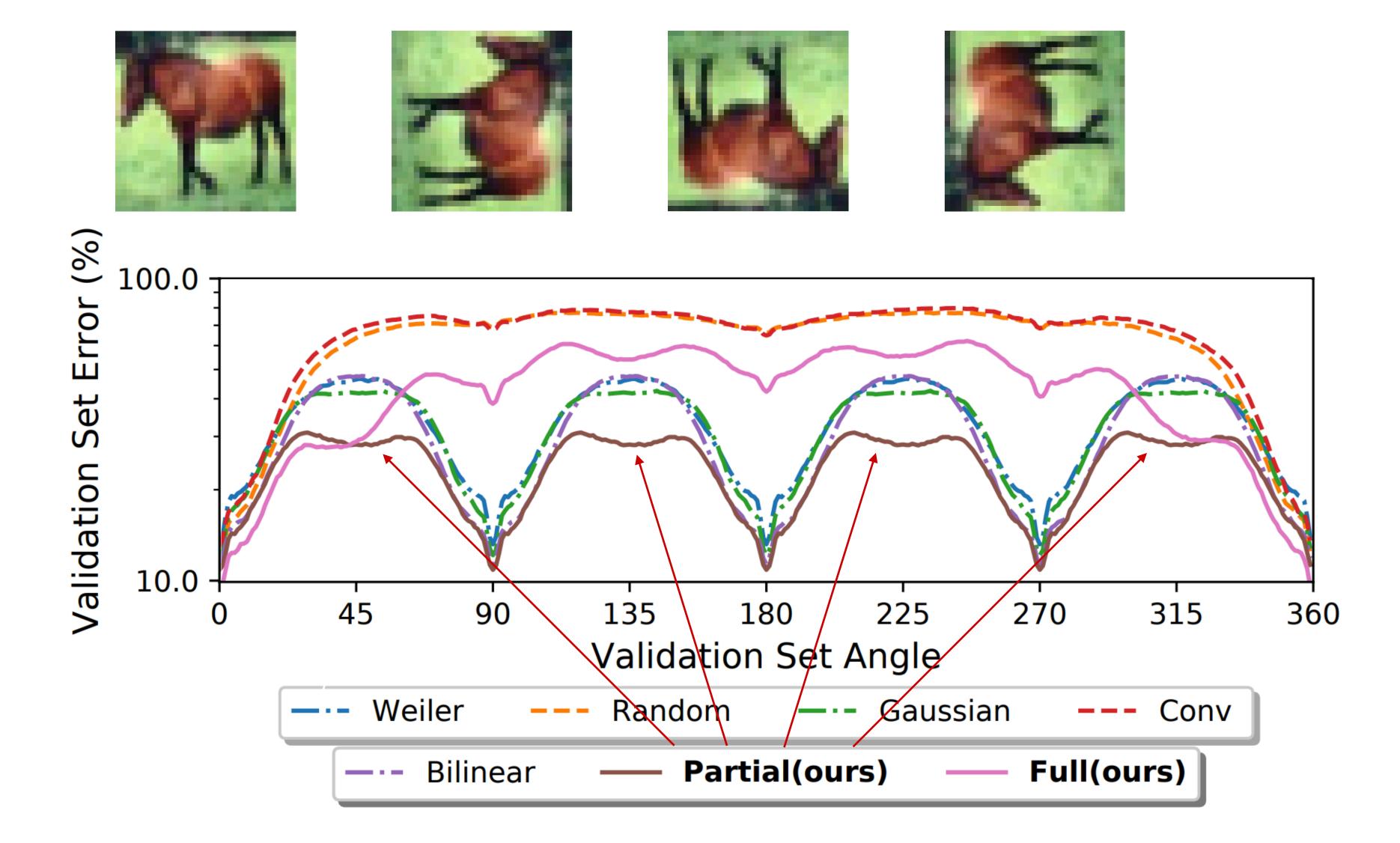












Thanks

Learning to Convolve: A Generalized Weight-Tying Approach

Nichita Diaconu 1 * Daniel Worrall 1 *

Abstract

Recent work (Cohen & Welling, 2016a) has shown that generalizations of convolutions, based on group theory, provide powerful inductive biases for learning. In these generalizations, filters are not only translated but can also be rotated, flipped, etc. However, coming up with exact models of how to rotate a 3×3 filter on a square pixel-grid is difficult. In this paper, we learn how to transform filters for use in the group convolution, focussing on roto-translation. For this, we learn a filter basis and all rotated versions of that filter basis. Filters are then encoded by a set of rotation invariant coefficients. To rotate a filter, we switch the basis. We demonstrate we can produce feature maps with low sensitivity to input rotations, while achieving high performance on MNIST and CIFAR-10.

group convolutions extend standard translational convolution to the setting where the symmetry is a discrete algebraic group (explained in Section 2.2). In other words, these are convolutions over invertible transformations, so kernels are not only translated but also rotated, flipped, etc.

One of the key assumptions with Cohen & Welling (2016a) and associated approaches is that the set of transformations forms a group. We cannot pick an arbitrary set of transformations. For instance, in Cohen & Welling (2016a) the authors choose the group of pixelwise translations, 90° rotations, and flips, that is the set of all transformations that map the regular square-lattice into itself; and in Hoogeboom et al. (2018) the authors consider the set of all transformations that map the hexagonal lattice into itself. However, in general the set of $\frac{2\pi}{N}$ rotations for integer N and pixelwise translations does not form a group because of pixelwise discretization, yet in Bekkers et al. (2018) and Weiler et al. (2018b), the authors use these sets of transformations. Their

ICML 2019
Tues 11th Jun 2019, 18:30 - 21:00
Pacific Ballroom, Poster #78

2019

May

 \sim

https://deworrall92.github.io/



Nichita Diaconu

Daniel Worrall