X PHILIPS

X
> &

Learning to Convolve:
A Generalized Weight-Tying Approach

Nichita Diaconu™ & Daniel Worrall*
Philips Lab ¢ AMLAB, University of Amsterdam

|ICML 2019




PHILIPS




PHILIPS




PHILIPS
q




In

Out

PHILIPS




In

Out




In

Out




Equivariance & Convolution
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Equivariance & Convolution

Input Filter
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Group convolution
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g-transformed filter

e.g. Cohen & Welling (2015)
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Group Convolutions
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Group Convolutions
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Unitary Group Convolutions




Unitary Group Convolutions




Unitary Group Convolutions




Learning Convolutions




Learning Convolutions




Learning Convolutions




Learning Convolutions




Learning Convolutions




Experiments: MLP — CNN
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Experiments: MLP — CNN

MNIST Test Error

MLP: 1.4%
Us: 0.7%
CNN: 0.5%
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Experiments: Filters
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Experiments: Filters
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Experiments: Filters
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Transformation robustness
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Weiler from Weiler et al. (2018)
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Transformation robustness
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Abstract

Recent work (Cohen & Welling, 2016a) has
shown that generalizations of convolutions, based
on group theory, provide powerful inductive bi-
ases for learning. In these generalizations, filters
are not only translated but can also be rotated,
flipped, etc. However, coming up with exact mod-
els of how to rotate a 3 x 3 filter on a square
pixel-grid is difficult. In this paper, we learn how
to transform filters for use in the group convolu-
tion, focussing on roto-translation. For this, we
learn a filter basis and all rotated versions of that
filter basis. Filters are then encoded by a set of
rotation invariant coefficients. To rotate a filter,
we switch the basis. We demonstrate we can pro-
duce feature maps with low sensitivity to input
rotations, while achieving high performance on
MNIST and CIFAR-10.
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group convolutions extend standard translational convolu-
tion to the setting where the symmetry is a discrete algebraic
group (explained in Section 2.2). In other words, these are
convolutions over invertible transformations, so kernels are
not only translated but also rotated, flipped, etc.

One of the key assumptions with Cohen & Welling (2016a)
and associated approaches is that the set of transformations
forms a group. We cannot pick an arbitrary set of trans-
formations. For instance, in Cohen & Welling (2016a) the
authors choose the group of pixelwise translations, 90° ro-
tations, and flips, that is the set of all transformations that
map the regular square-lattice into itself; and in Hoogeboom
et al. (2018) the authors consider the set of all transforma-
tions that map the hexagonal lattice into itself. However, in
general the set of %” rotations for integer /N and pixelwise
translations does not form a group because of pixelwise
discretization, yet in Bekkers et al. (2018) and Weiler et al.
(2018b), the authors use these sets of transformations. Their
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