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“Rethinking generalization” Experiment [Zhang et al ‘17]
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“Rethinking generalization” Experiment [Zhang et al ‘17]

Unexplained phenomena

@ SGD achieves nearly 0 training loss for both
correct and random labels (overparametrization!)

(2) Good generalization with correct labels

@ Faster convergence with correct labels than random
labels.
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Setting: Overparam Two-Layer ReLU Neural Nets

Unexplained phenomena

@ SGD achieves nearly 0 training loss for both
correct and random labels (overparametrization!)

(2) Good generalization with correct labels

(®) Faster convergence with correct labels.

Overparam: # hidden nodes is large
(W, x) Training obj: €, loss, binary classification
Init: i.i.d. Gaussian
Opt algo: GD for the first layer, W
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* Faster convergence
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Training Speed

Theorem:

2
loss(iteration k) ~ ||[(I —nH)* - y ||
* y:vector of labels

* H: kernel matrix (“Neural Tangent Kernel”),

_ T,
Hij = Ey (Vi f(W,xD), vy f (W, x0))) = m — arccos(x; x;)

2T

xl-ij
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. . . . . = Training loss over time
* Training speed determined by projections of y on
eigenvectors of H: (y, v1), (Y, v2), (¥, V3), - Explains different training
* Components on top eigenvectors converge to 0 speeds on correct vs random
faster than components on bottom eigenvectors labels




Explaining Generalization despite vast overparametrization

“data dependent

Theorem: For 1-Lipschitz loss, / complexity”
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