Fine-Grained Analysis of Optimization and Generalization for Overparameterized Two-Layer NNs

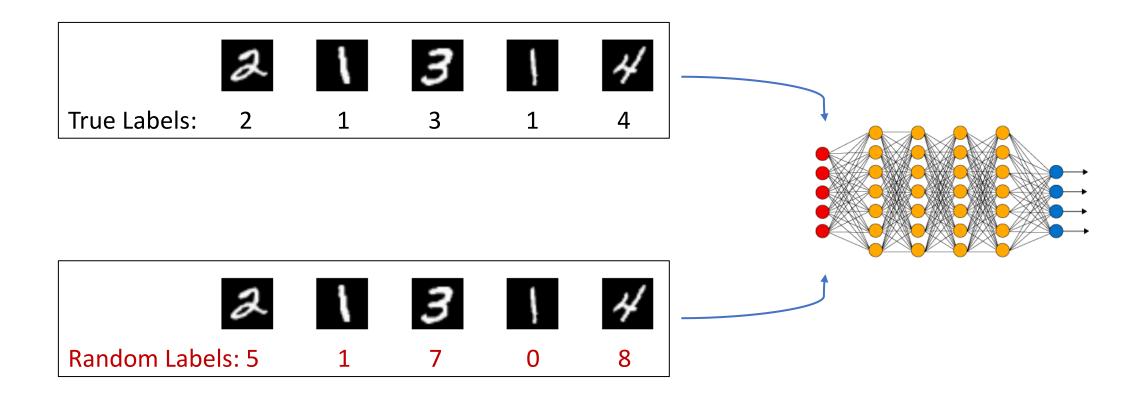
Sanjeev Arora
Princeton & IAS

Simon S. Du

Wei Hu
Princeton

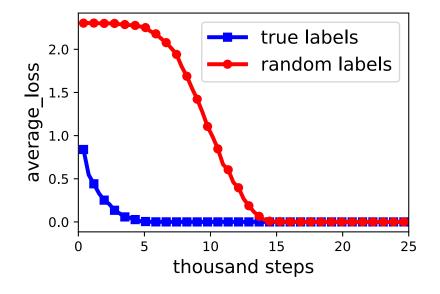
Zhiyuan Li
Princeton

Ruosong Wang



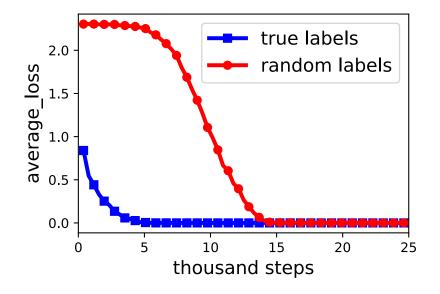
Unexplained phenomena

- 1 SGD achieves nearly 0 training loss for both correct and random labels (overparametrization!)
- 2 Good generalization with correct labels
- Faster convergence with correct labels than random labels.



Unexplained phenomena

- 1 SGD achieves nearly 0 training loss for both correct and random labels (overparametrization!)
- 2 Good generalization with correct labels
- Faster convergence with correct labels than random labels.

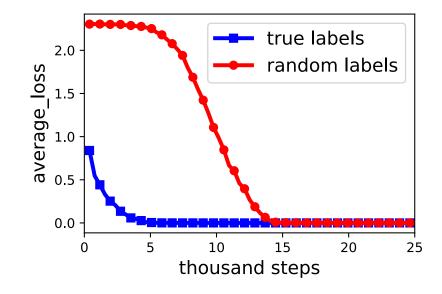


No good explanation in existing generalization theory:

generalization gap $\leq \sqrt{\frac{\text{model complexity}}{\text{# training samples}}}$

Unexplained phenomena

- 1 SGD achieves nearly 0 training loss for both correct and random labels (overparametrization!)
- (2) Good generalization with correct labels
- 3 Faster convergence with correct labels than random labels.



No good explanation in existing generalization theory:

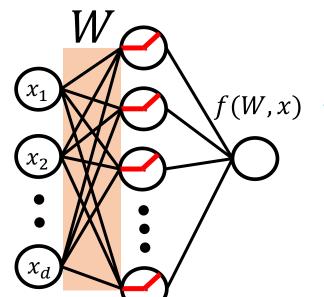
generalization gap $\leq \sqrt{\frac{\text{model complexity}}{\text{# training samples}}}$

This paper: Theoretical explanation for overparametrized 2-layer nets using label properties

Setting: Overparam Two-Layer ReLU Neural Nets

Unexplained phenomena

- 1 SGD achieves nearly 0 training loss for both correct and random labels (overparametrization!)
- 2 Good generalization with correct labels
- 3 Faster convergence with correct labels.



Overparam: # hidden nodes is large

Training obj: ℓ_2 loss, binary classification

Init: i.i.d. Gaussian

Opt algo: GD for the first layer, W

Setting: Overparam Two-Layer ReLU Neural Nets

Unexplained phenomena

- 1 SGD achieves nearly 0 training loss for both correct and random labels (overparametrization!)
- 2 Good generalization with correct labels
- 3 Faster convergence with correct labels.

f(W,x) x_2 x_3 x_4

Overparam: # hidden nodes is large

Training obj: ℓ_2 loss, binary classification

Init: i.i.d. Gaussian

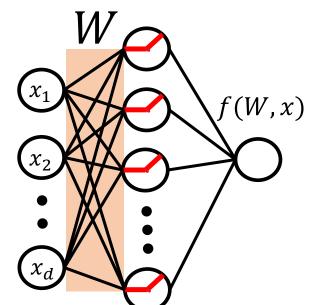
Opt algo: GD for the first layer, W

[Du et al., ICLR'19]:
GD converges to 0 training loss
Explains phenomenon ①,
but not ② or ③

Setting: Overparam Two-Layer ReLU Neural Nets

Unexplained phenomena

- 1 SGD achieves nearly 0 training loss for both correct and random labels (overparametrization!)
- 2 Good generalization with correct labels
- 3 Faster convergence with correct labels.



Overparam: # hidden nodes is large

Training obj: ℓ_2 loss, binary classification

Init: i.i.d. Gaussian

Opt algo: GD for the first layer, W

[Du et al., ICLR'19]: GD converges to 0 training loss Explains phenomenon ①, but not ② or ③

This paper: for 2 and 3

- Faster convergence with true labels
- A data-dependent generalization bound (distinguish random labels from true labels).

Training Speed

Theorem:

loss(iteration
$$k$$
) $\approx \|(I - \eta H)^k \cdot y\|^2$

- y: vector of labels
- H: kernel matrix ("Neural Tangent Kernel"),

$$H_{ij} = \mathcal{E}_{W} \left\langle \nabla_{W} f(W, x^{(i)}), \nabla_{W} f(W, x^{(j)}) \right\rangle = \frac{\pi - \arccos(x_{i}^{\mathsf{T}} x_{j})}{2\pi} x_{i}^{\mathsf{T}} x_{j}$$

Training Speed

Theorem:

loss(iteration
$$k$$
) $\approx \|(I - \eta H)^k \cdot y\|^2$

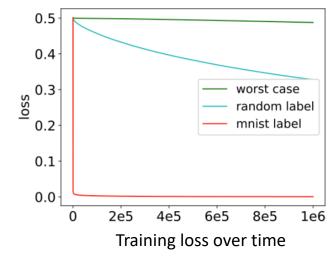
- y: vector of labels
- H: kernel matrix ("Neural Tangent Kernel"),

$$H_{ij} = \mathcal{E}_{W} \left\langle \nabla_{W} f(W, x^{(i)}), \nabla_{W} f(W, x^{(j)}) \right\rangle = \frac{\pi - \arccos(x_{i}^{\mathsf{T}} x_{j})}{2\pi} x_{i}^{\mathsf{T}} x_{j}$$

<u>Implication:</u>

- Training speed determined by projections of y on eigenvectors of $H: \langle y, v_1 \rangle, \langle y, v_2 \rangle, \langle y, v_3 \rangle, ...$
- Components on top eigenvectors converge to 0 faster than components on bottom eigenvectors



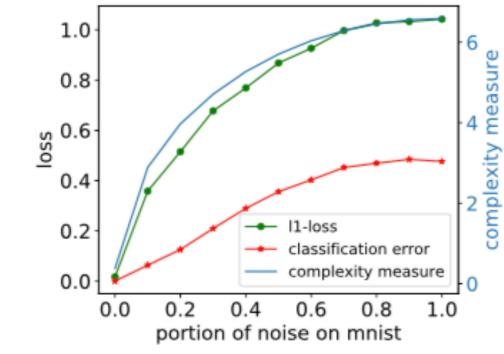


Explains different training speeds on correct vs random labels

Explaining Generalization despite vast overparametrization

Theorem: For 1-Lipschitz loss, $\frac{2y^{T}H^{-1}y}{\text{test error}} + \text{small terms}$

<u>Corollary:</u> Simple functions are provably learnable (eg, linear function and even-degree polynomials).



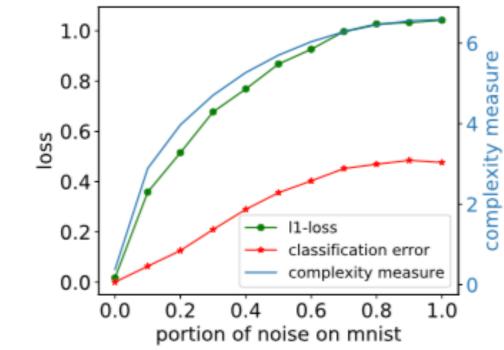
"data dependent

Explaining Generalization despite vast overparametrization

Theorem: For 1-Lipschitz loss, $\frac{2y^{\mathsf{T}}H^{-1}y}{\text{test error}} + \text{small terms}$

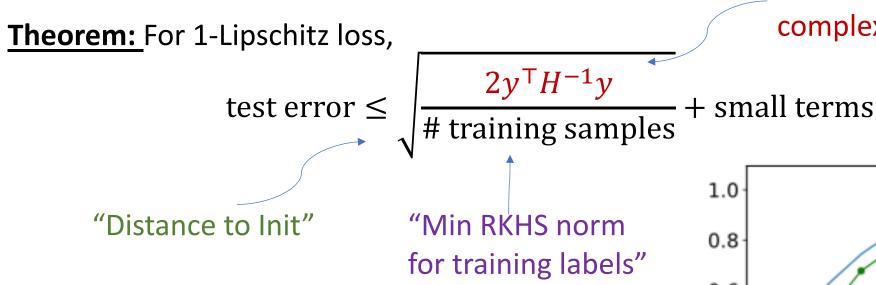
Corollary: Simple functions are provably learnable (eg, linear function and even-degree polynomials).

Poster #75 tonight



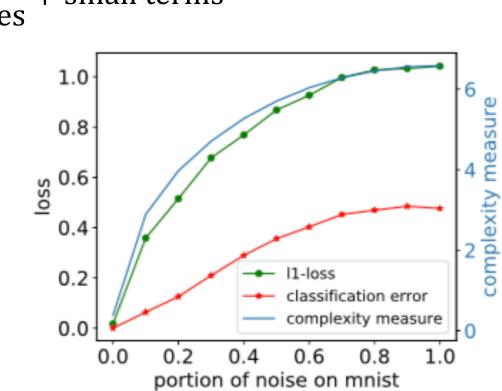
"data dependent

Explaining Generalization despite vast overparametrization



Corollary: Simple functions are provably learnable (eg, linear function and even-degree polynomials).

Poster #75 tonight



"data dependent

complexity"