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Motivation

Deep neural networks have multiple global minima.

Each minimum has different generalization properties.

Empirically, training deep neural networks we get specific solutions
that generalize well.

Main Goal

We would like to understand the minima selection
process in training deep neural networks.
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Setting

Empirical loss:

min
θ
L(θ) =

N∑
n=1

e−fn(θ)

fn(θ) - the prediction function, N - number of samples.

We examine overparameterized realizable problems i.e., where it is
possible to perfectly classify the training data.

The inductive bias introduced in our learning process affects which
specific global minimizer is chosen.
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Inductive Bias Sources

1) Regularization path:

Θr(λ) = arg min
θ
L(θ) + λ ‖θ‖22 (1)

– Empirically, using small, and even vanishing λ can improve generalization.

– What happens at the limit of the regularization path, when λ→ 0?

2) Constrained path:

Θc(ρ) = arg min
θ
L(θ) s.t. ‖θ‖2 ≤ ρ

– Previously related to problem (1).

– What happens at the limit of the constrained path, when ρ→∞?

3) Optimization path:

θ̄(t) =
θ(t)

‖θ(t)‖
, ∆θ(t) = −η∇L (θ (t))

– What happens at the limit of the optimization path, when t→∞?
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Previous Results

For linear prediction functions:
I Optimization path ⇒ Max-Margin solution.

I Regularization and Constrained paths ⇒ Max-Margin solution.

For homogeneous prediction functions, e.g., ReLU networks:

I Regularization path ⇒ Max-Margin solution.

∆θ(t) = −η∇L (θ)

Soudry et al. (2018), Gunasekar et al. (2018), Rosset et al. (2004), Wei et al. (2018).
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We study how infinitesimal regularization or gradient
descent optimization lead to margin maximizing solutions
in both homogeneous and non-homogeneous models.
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Main Contributions - Non-Homogeneous Models

For fn(θ) = sum of homogeneous functions of different orders:
we characterized the constrained path asymptotic solution.

Implication

In an ensemble of homogeneous neural networks, e.g., feedforward ReLU
networks, the ensemble will aim to discard the most shallow network.

Input

Input

Input

Input
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Main Contributions - Homogeneous Models

Q: In non-linear homogeneous models:

1) Are optimization and constrained paths still equivalent?
2) Does the optimization path still leads to max-margin solutions?

A: Yes, we find general conditions under which the optimization path
converges to:

1) stationary points of the constrained path.
2) max-margin solutions.

Optimization
Path

Constrained Path

Max-margin
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Main Contributions - Homogeneous Models

Refined characterization:
I For non-convex prediction functions the max-margin solution is not

necessarily unique.
I We show that the constrained path converges to a specific type of

max-margin solution.

Q: Is margin maximization all that we do?

A: No. After maximizing the distance to the closest data point
(max-margin), we also maximize the distance to the second closest
data point, and so on.

Poster: Pacific Ballroom #72 Lexicographic and Depth-Sensitive Margins ICML, 2019 9 / 10



Main Contributions - Homogeneous Models

Refined characterization:
I For non-convex prediction functions the max-margin solution is not

necessarily unique.
I We show that the constrained path converges to a specific type of

max-margin solution.

Q: Is margin maximization all that we do?

A: No. After maximizing the distance to the closest data point
(max-margin), we also maximize the distance to the second closest
data point, and so on.

Poster: Pacific Ballroom #72 Lexicographic and Depth-Sensitive Margins ICML, 2019 9 / 10



Main Contributions - Homogeneous Models

Refined characterization:
I For non-convex prediction functions the max-margin solution is not

necessarily unique.
I We show that the constrained path converges to a specific type of

max-margin solution.

Q: Is margin maximization all that we do?

A: No. After maximizing the distance to the closest data point
(max-margin), we also maximize the distance to the second closest
data point, and so on.

Poster: Pacific Ballroom #72 Lexicographic and Depth-Sensitive Margins ICML, 2019 9 / 10



Thank You!

Poster –
Pacific Ballroom #72

Poster: Pacific Ballroom #72 Lexicographic and Depth-Sensitive Margins ICML, 2019 10 / 10


	Introduction

