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Motivation

@ Deep neural networks have multiple global minima.

@ Each minimum has different generalization properties.
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@ Deep neural networks have multiple global minima.
@ Each minimum has different generalization properties.

@ Empirically, training deep neural networks we get specific solutions
that generalize well.

Main Goal

We would like to understand the minima selection
process in training deep neural networks.
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@ Empirical loss:

mlnE Z e~ fn(9)

fn(0) - the prediction function, N - number of samples.
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@ Empirical loss:
mlnE Z e~ In(0)

fn(0) - the prediction function, N - number of samples.

@ We examine overparameterized realizable problems i.e., where it is
possible to perfectly classify the training data.

@ The inductive bias introduced in our learning process affects which
specific global minimizer is chosen.
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Inductive Bias Sources

1) Regularization path:
©;(A) = argmin £(6) +Alel; ()
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Inductive Bias Sources

1) Regularization path:

©,(A) = argmin £(6) +Alel; (1)
— Empirically, using small, and even vanishing A can improve generalization.
— What happens at the limit of the regularization path, when A — 07
2) Constrained path:

Oc(p) = argmin £(68) st. 6], < p

— Previously related to problem (1).
— What happens at the limit of the constrained path, when p — c0?

3) Optimization path:

o A0 =-nVL(6(1))
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Inductive Bias Sources

1) Regularization path:

©,(A) = argmin £(6) +Alel; (1)
— Empirically, using small, and even vanishing A can improve generalization.
— What happens at the limit of the regularization path, when A — 07

2) Constrained path:
Oclp) = argmin £(0) st. 0], < 5

— Previously related to problem (1).
— What happens at the limit of the constrained path, when p — c0?
3) Optimization path:
~ ot
0(t) = 7( ) )
10@)]l

— What happens at the limit of the optimization path, when ¢ — co?

A6(t) = —VL (8 (1))
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Previous Results

@ For linear prediction functions:
» Optimization path = Max-Margin solution.

Soudry et al. (2018), Gunasekar et al. (2018), Rosset et al. (2004), Wei et al. (2018).
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Previous Results

@ For linear prediction functions:

» Optimization path = Max-Margin solution.
» Regularization and Constrained paths = Max-Margin solution.

@ For homogeneous prediction functions, e.g., ReLU networks:
» Regularization path = Max-Margin solution.

Soudry et al. (2018), Gunasekar et al. (2018), Rosset et al. (2004), Wei et al. (2018).
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We study how infinitesimal regularization or gradient
descent optimization lead to margin maximizing solutions
in both homogeneous and non-homogeneous models.
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Main Contributions - Non-Homogeneous Models

e For f,(60) = sum of homogeneous functions of different orders:
we characterized the constrained path asymptotic solution.
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Main Contributions - Non-Homogeneous Models

e For f,(60) = sum of homogeneous functions of different orders:
we characterized the constrained path asymptotic solution.

Implication

In an ensemble of homogeneous neural networks, e.g., feedforward RelLU
networks, the ensemble will aim to discard the most shallow network.
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Main Contributions - Homogeneou

Q: In non-linear homogeneous models:

1) Are optimization and constrained paths still equivalent?
2) Does the optimization path still leads to max-margin solutions?
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Main Contributions - Homogeneous Models

Q: In non-linear homogeneous models:

1) Are optimization and constrained paths still equivalent?
2) Does the optimization path still leads to max-margin solutions?

A: Yes, we find general conditions under which the optimization path
converges to:

1) stationary points of the constrained path.
2) max-margin solutions.

( Constrained Path )
[ Optimizatlonj
Path
4 Max-margin )
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Main Contributions - Homogeneou

@ Refined characterization:
» For non-convex prediction functions the max-margin solution is not
necessarily unique.
» We show that the constrained path converges to a specific type of
max-margin solution.
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Main Contributions - Homogeneous Models

@ Refined characterization:
» For non-convex prediction functions the max-margin solution is not
necessarily unique.
» We show that the constrained path converges to a specific type of
max-margin solution.

Q: Is margin maximization all that we do?

A: No. After maximizing the distance to the closest data point
(max-margin), we also maximize the distance to the second closest
data point, and so on.
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Thank You!
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