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Now we are stepping Into risk-sensitive areas
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Problems of today’s ML - Explainability

Most machine learning models are black-box models

Unexplainable Human in the loop
e
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Problems of today’'s ML - Stability

Most ML methods are developed under I.I.D hypothesis

Test Distribution

Training Distribution
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Problems of today’'s ML - Stability

- Cancer survival rate prediction
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Higher income, higher survival rate. University Hospital

Survival rate is not so correlated with income.



A plausible reason: Correlation

Correlation is the very basics of machine learning.

WE FOUND THIS CORRELATION
SALES IN THE DATA. EVERYONE
TAKE A RAZOR.

® marketoonist.com



Correlation is not explainable

People who drowned after falling out of a fishing boat
correlates with

Marriage rate in Kentucky
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Correlation is ‘unstable’

At home on beach eating

on grass in street running




It's not the fault of correlation, but the way we use it

Three sources of correlation:

Causation

Causal mechanism ®—>® Summer
(S0

Stable and explainable
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A Practical Definition of Causality

Definition: T causes Y if and only if
changing T leads to a change Iin Y,
while keeping everything else constant.

Causal effect is defined as the magnitude by which Y is
changed by a unit change in T.

Called the “interventionist” interpretation of causality.

*Interventionist definition [http://plato.stanford.edu/entries/causation-mani/]




The benefits of bringing causality into learning

Causal Framework Grass—Label: Strong correlation
Weak causation
Dog nose—Label: Strong correlation

Strong causation

T: grass
X: dog nose
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The gap between causality and learning

[OHow to evaluate the outcome?

OWild environments

0 High-dimensional

0 Highly noisy
O Little prior knowledge (model specification, confounding structures)
[0 Targeting problems

0 Understanding v.s. Prediction

0 Depth v.s. Scale and Performance

How to bridge the gap between causality and (stable) learning?



Outline

»Correlation v.s. Causality

»Causal Inference

»Stable Learning
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Paradigms - Structural Causal Model

A graphical model to describe the causal mechanisms of a system

- Causal Identification with back
door criterion

- Causal Estimation with do
calculus

How to discover the causal structure?




Paradigms — Structural Causal Model

- Causal Discovery
- Constraint-based: conditional independence
- Functional causal model based

X1 1L X5 . Fa/t/)f
X% 1% s Yin,
Iy
X1 L Xy [{X3} /ro.,_ G @
X1 L X5 | {X3} N
i () ()

A generative model with strong expressive power.

But it induces high complexity.



Paradigms - Potential Outcome Framework

- A simpler setting
- Suppose the confounders of T are known a priori

Confounders

- The computational complexity is affordable

- Under stronger assumptions
- E.g. all confounders need to be observed

Treatment

T

reatment Effect
Estimation

More like a discriminative way to estimate treatment’s

partial effect on outcome.



Causal Effect Estimation

- Treatment Variable: T=1orT =0

- Treated Group (T = 1) and Control Group (T = 0) ,. =
- Potential Outcome: Y(T = 1) and Y(T = 0)

- Average Causal Effect of Treatment (ATE):

ATE = E[Y(T = 1) = Y(T = 0)]




Counterfactual Problem

Person T Y;_; Y7

P1 1 04 ?
P2 0o 7 0.6
P3 1 0.3 ?

P4 0o 7 0.1
P5 1 0.5 ?

P6 0o 7 0.5
P7 0o 7 0.1

Two key points for causal effect
estimation

Changing T

Keeping everything else constant

For each person, observe only one:
either Y,_,or Y;_,

For different group (T=1 and T=0),
something else are not constant



|deal Solution: Counterfactual World

- Reason about a world that does not exist

- Everything in the counterfactual world is the same as the
real world, except the treatment




Randomized Experiments are the "Gold Standard”

- Drawback
- Cost
- Unethical
- Unrealistic




Causal Inference with Observational Data

- Counterfactual Problem:
Y(T=1) or Y(T =0)
- Can we estimate ATE by directly comparing the average
outcome between treated and control groups?

- Yes with randomized experiments (X are the same)
- No with observational data (X might be different)

reatment Effect
Estimation



Confounding Effect

| Age |\

smoking weight

Balancing Confounders’ Distribution




Methods for Causal Inference

- Matching
- Propensity Score

- Directly Confounder Balancing



Matching







Matching

- Identify pairs of treated (T=1) and control (T=0) units
whose confounders X are similar or even identical to
each other ‘

Distance(Xi,Xj) <€
- Paired units guarantee that the everything else
(Confounders) approximate constant
- Small €: less bias, but higher variance
- Fit for low-dimensional settings

- But in high-dimensional settings, there will be few exact
matches

<



Methods for Causal Inference

- Matching
- Propensity Score

- Directly Confounder Balancing
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Propensity Score Based Methods

- Propensity score e(X) is the probability of a unit to get treated

e(X) = P(T = 1|X)

- Then, Donald Rubin shows that the propensity score is sufficient
to control or summarize the information of confounders

TLX|e(X) = TL(Y(1),Y(0)]|elX)

- Propensity scores cannot be observed, need to be estimated



Propensity Score Matching
Estimating propensity score: é(X) = P(T = 1|X)

Supervised learning: predicting a known ) =
label T based on observed covariates X. I s
Conventionally, use logistic regression ) |

Matching pairs by distance between
propensity score:

Dlstance(Xl, ]) = |e(X;) — e(X )

Dlstance(Xl, ]) <e€

ligh dimensional challenge: from matching to PS estimation

P. C. Austin. An introduction to propensity score methods for reducing the effects of confounding in observational studies. Multivariate behavioral research, 46(3):399-424, 2011.



Inverse of Propensity Weighting (IPW)

- Why weighting with inverse of propensity score?
- Propensity score induces the distribution bias on confounders X

e(X) = P(T = 1|X)
o e
A 0.7 0.3 10

. . A /(10 /10 \ Confounders
B 06 0.4 50 B 50 50 are the same!
C 0.2 0.8 40 C 40 40

T, 1-T;
Reweighting by inverse of propensity score: W; = o + P
[ G

P. R. Rosenbaum and D. B. Rubin. The central role of the propensity score in observational studies for causal effects. Biometrika, 70(1):41-55, 1983.




Inverse of Propensity Weighting (IPW)
- Estimating ATE by IPW [1]: W S

€ 1—€i

1 .Y, 1< (1-T)Y;
ATEpy =37 2k -2y o=

- Interpretation: IPW creates a pseudo-population where the
confounders are the same between treated and control groups.

- But requires correct model specification for propensity score
- High variance when e is close to 0 or 1

P. R. Rosenbaum and D. B. Rubin. The central role of the propensity score in observational studies for causal effects. Biometrika, 70(1):41-55, 1983.



Non-parametric solution

- Model specification problem is inevitable

- Can we directly learn sample weights that can balance
confounders’ distribution between treated and control

groups?



Methods for Causal Inference

- Matching
- Propensity Score

- Directly Confounder Balancing



Directly Confounder Balancing

- Motivation: The collection of all the moments of variables
uniquely determine their distributions.

- Methods: Learning sample weights by directly balancing
confounders’ moments as follows (ATT problem)

B REDE

[ The first moments of X ] [ The first moments of X ]
on the Treated Group on the Control Group

With moments, the sample weights can be learned
without any model specification.

J. Hainmueller. Entropy balancing for causal effects: A mul- tivariate reweighting method to produce balanced samples in observational studies. Political Analysis, 20(1):25-46, 2012.



Entropy Balancing

j l
win W log(W)

st (IX, —XTW|2=0)
S Wi=1,W =0

- Directly confounder balancing by sample weights W
- Minimize the entropy of sample weights W

Either know confounders a priori or regard all variables as confounders .

All confounders are balanced equally.

Athey S, et al. Approximate residual balancing: debiased inference of average treatment effects in high dimensions. Journal of the Royal Statistical Society: Series B, 2018, 80(4): 597-623.



Differentiated Confounder Balancing

- Idea: Different confounders make different confounding
bias
-Stmultaneously learn confounder weights [ and sample

weighs W | S . )
min (B8 - (X¢ — X W))

- Confounder weights determine which variable 1s
confounder and 1ts contribution on confounding bias.

-Sample weights are designed for confounder balancing.

Kun Kuang, Peng Cui, et al. 2017. Estimating Treatment Effect in the Wild via Differentiated Confounder Balancing, KDD 2017, 265-274.



Differentiated Confounder Balancing

- General relationship among X, T, and Y

ATT = E(g(Xy))
Y =fX)+T -9(X)+e wmp Y(0) = f(X) + ¢

f(X) = a1 X + E ainin + E az-ijz-Xij R Rn(X) :
] ijk :

I

I

[Confounder weh hts] [ Confounding bias ]
ATT = ATT + ZZ:l Zi:Tizl %M%k — Zj:T,,:o W;Mj k) + &(e).

If a;, = 0, then M, is not confounder, no need to balance.
Different confounders have different confounding weights.

Kun Kuang, Peng Cui, et al. 2017. Estimating Treatment Effect in the Wild via Differentiated Confounder Balancing, KDD 2017, 265-274.



Differentiated Confounder Balancing

- Ideas: simultaneously learn confounder weights B and sample
weighs W

» Confounder weights determine which variable 1s confounder and its
contribution on confounding bias.

- Sample weights are designed for confounder balancing.

- The ENT algorithm 1s a special case of DCB algorithm by setting the
confounder weights as unit vector.

Kun Kuang, Peng Cui, et al. 2017. Estimating Treatment Effect in the Wild via Differentiated Confounder Balancing, KDD 2017, 265-274.



Experiments
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Kun Kuang, Peng Cui, et al. 2017. Estimating Treatment Effect in the Wild via Differentiated Confounder Balancing, KDD 2017, 265-274.

Variables Set V-RAW V-INTERACTION
Estimator ATT | Bias (SD) ATT | Bias (SD)
ATT g -8471 | 10265 (374) || -8471 | 10265 (374)
ATTrpw | -4481 | 6275(971) || -4365 | 6159 (1024)
ATTpr 1154 | 639 (491) 1590 | 204 (812)
ATTENT 1535 259 (99)5) 1405 388 (787)
ATT ArB 1237_ ’
ATTpcp | 1958

—~— o




Assumptions of Causal Inference

A1: Stable Unit Treatment Value (SUTV): The effect of treatment on
a unit is independent of the treatment assignment of other units

P(Y:|T:, Tj, X;) = P(Y;I Ty, X;)

A2: Unconfounderness: The distribution of treatment is independent
of potential outcome when given the observed variables

T L(Y(0),Y(D))l X
No unmeasured confounders
A3: Overlap: Each unit has nonzero probability to receive either

treatment status when given the observed variables
O<P(T=1X=x)<1



Sectional Summary
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Stability and Prediction

Prediction
Performance

Learning Process

True Model

=

Traditional Learning

Prediction
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Bin Yu (2016), Three Principles of Data Science: predictability, computability, stability

Stable Learning



Stable Learning

Testing

Distribution 1 Accuracy 1 i~ L.I.LD. Learning

Training
Distribution 2 Accuracy 2

Distribution 1 . _ VAR (Acc) | Stable
Distribution 3 Accuracy 3 Learning

————————————————————————————

E Distribution n Accuracy n - Transfer Learning




Stability and Robustness

- Robustness
- More on prediction performance over data perturbations
- Prediction performance-driven
- Stability
- More on the true model
- Lay more emphasis on Bias
- Sufficient for robustness

Stable learning is a (intrinsic?) way to realize robust prediction




L ———
Stability

- Statistical stability holds if statistical conclusions are
robust to appropriate perturbations to data.

- Prediction Stability
- Estimation Stability

Bernoulli 19(4), 2013, 1484—1500
DOI: 10.3150/13-BEJSP14

Stability

BIN YU

Departments of Statistics and EECS, University of California at Berkeley, Berkeley, CA 94720, USA.
E-mail: binyu@stat.berkeley.edu
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Prediction Stability

-Lasso R ,
B(A) = arg {IIY — XpBl5 +Allﬂ||1},
BERP

- Prediction Stability by Cross-Validation

- n data units are randomly partitioned into V blocks, each block
has d = [n/V] units.

- Leave one out: training on (n-d) units, validating on d units.

- CV does not provide a good interpretable model because
Lasso+CV is unstable.



Estimation Stabllity

- Estimation Stability:
- Mean regression function: m(t) = % ZXBU(T),

- Variance of function m: A n—d 1 A . 2
() =—=22 ([Xp@® —m@]).

v

- Estimation Stability:
1/VY JIXBu(m) —m()*  d T(r)

B3 = () ~ n—d ()

[ ES+CV is better than Lasso+CV ]




Domain Generalization / Invariant Learning

- Given data from different
observed environments ec € :

(X8, Y®) ~ Fe, ec&

- The task is to predict Y given X
such that the prediction works
well (is “robust”) for “all possible”
(including unseen) environments




Domain Generalization

Assumption: the conditional probability P(Y|X) is stable or
invariant across different environments.

Idea: taking knowledge acquired from a number of related domains
and applying it to previously unseen domains

Theorem: Under reasonable technical assumptions. Then with
probability at least 1 —9

2
sup

SERU(F(X;), Yi) — Esl(f(X;), Yi)
1]l <1

N-(logé—!+2logN logé—! ¢

§C1-VH(IP’1,IP2,..,,IPN)+C2 (log + g )+C3 g 4 4

(- - _y < n N NJ
distributional variance ) e

vanish as N,n— oo

Muandet K, Balduzzi D, Scholkopf B. Domain generalization via invariant feature. ICML 2013.



Invariant Prediction

Invariant Assumption: There exists a subset S € X is causal for the prediction
of Y, and the conditional distribution P(Y|S) is stable across all environments.

for all e € £, X¢ has an arbitrary distribution and

Y¢=g(X, &), ¢~ F, and ¢° 1l X%
Idea: Linking to causality vee S ByaXe+ <8
Structural Causal Model (Pearl 2009): kepa(Y) 35 ~Fvecg

The parent variables of Y in SCM satisfies Invariant Assumption
The causal variables lead to invariance w.r.t. “all” possible environments

Peters, J., Buhlmann, P., & Meinshausen, N. (2016). Causal inference by using invariant prediction: identification and
confidence intervals. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 2016



From Variable Selection to Sample Reweighting

Directly Confounder Balancing

Given a feature T

Assign different weights to samples so that
the samples with T and the samples without
T have similar distributions in X

Typical Causal Framework Calculate the difference of Y distribution in
treated and controlled groups. (correlation
between T and Y)

Sample reweighting can make a variable independent of other

variables.




Global Balancing: Decorrelating Variables

Global Balancing

Given ANY feature T

Assign different weights to samples so that the
samples with T and the samples without T have
similar distributions in X

Typical Causal Framework Calculate the difference of Y distribution in
treated and controlled groups. (correlation
between T and Y)

Partial effect can be regarded as causal effect. Predicting with causal

variables is stable across different environments.

Kun Kuang, Peng Cui, Susan Athey, Ruoxuan Li, Bo Li. Stable Prediction across Unknown Environments. KDD, 2018.



Theoretical Guarantee

ProPOSITION 3.3. If0 < P(Xi = x) < 1 forallx, where P(X; = x) =
% Y. I(X; = x), there exists a solution W™ satisfies equation (4) equals
0 and variables in X are independent after balancing by W*.

Proor. Sice <]l = 0, Eq. (8) can be simplified o ¥j, vk = |
|.I|'||. |.—"'.l":"'.|" b _ :'llll-:'l:l--\.h.ll —
— —| =

p XT_(WGXJ) XT_(WQ(I_XJ)) 2 with probability 1. For W*, from Lemma 3.1, 0 < PX; = 2} < 1,
Z- | .JT _ -JT , (4) W, Wit =1or0,
= wh. X ; wh.(1-X. : :
J x’j (1 xj) 2 nlil_l_;u“%';;:li._, iy = “|!E|_5_1%'_1 g of LiX=x Wy
i L] -
= uIT-.-"T rpat W Ll Xesx T, -x)
- nlﬂ'l'_hl_"_; v.—i PUX§ = X} Eﬁ =F y
with probability 1 (Low of Large Number). Since fealures are banary,
O .-_!‘i—ﬂl..'!'_-—"‘lr I .||I'|I‘1:]- =¥
liam %L;xl W =¥ oo lim LY x o x W, = 2P0
B o f o—i- - x f

and therefore, we have following equation with probability 1:

I-:'n.rllli' % 7l :I.rjullu am-X. 1] o 1 L ]

= | = —_ = L
dim | =S wTpx, |- T g =

a

Kun Kuang, Peng Cui, Susan Athey, Ruoxuan Li, Bo Li. Stable Prediction across Unknown Environments. KDD, 2018.



Causal Regularizer

Set feature j as treatment variable

-———~ ——-

xT (W L) XZ“J. -Wo(-1I)) ,

__:J, L2
Z '----T' T . k
J=1.,. -YK-- IJ W ' (1 - I])

" All features Sample " Indicator of |
excluding Wei %ts treatment
| treatment / J | status |

Zheyan Shen, Peng Cui, Kun Kuang, Bo Li. Causally Regularized Learning on Data with Agnostic Bias. ACM MM, 2018.



Causally Regularized Logistic Regression

min (%7, Wi - log(1+exp((1-2Y,) (eipD)
,, """" W oL XL WOl EY 5
S°t;x" z"j=1 ” WT I; WT (1-I;) 25 A1,
S w0, (WIE <Az, [IBIE < 2, [1Blli < As,
Sample w(Zk=1 Wi — 1)* < s, 4 \' N
reweighted Causal
logistic loss | Contribution
. J

Zheyan Shen, Peng Cui, Kun Kuang, Bo Li. Causally Regularized Learning on Data with Agnostic Bias. ACM MM, 2018.
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From Shallow to Deep - DGBR

Unsuspeervisesd ©oampoaeni Linesiapervtseed ©omgpanent
{Cheep AuTo-Encodder] {GEabal Balancing|

Kun Kuang, Peng Cui, Susan Athey, Ruoxuan Li, Bo Li. Stable Prediction across Unknown Environments. KDD, 2018.



Experiment 1 — non-i.i.d. image classification

- Source: YFCC100M

- Type: high-resolution and multi-tags

- Scale: 10-category, each with nearly 1000 images

- Method: select 5 context tags which are frequently co-occurred with




Experimental Result - insights
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Experimental Result - insights




Experiment 2 — online advertising

- Environments generating:

- Separate the whole dataset into 4 environments by users’ age, including
Age € |20,30), Age € |30,40), Age € [40,50), and Age € [50,100).

- . . . §0.42
0.457 —ul L
%gggn S 04 ] I
E
20.38 [
y 04t & LT |
cg - o3 0.36 l
o S
0.35¢ uleo‘34 I
$0.32
©
2 03
< LR DLR GBR DGBR

[20,30) [30,40) [40,50)[50,100)
Age
Fig. 15: Prediction across environments separated by age. The
models are trained on dataset where uses’ Age € [20,30), but
tested on various datasets with different users’ age range.

Fig. 16: Average_FError and Stability_Error of all algo-
rithms across environments after fixing P(Y") as the same with
its value on global dataset.



From Causal problem to Learning problem

- Previous logic:

Sample Independent

Reweighting Variables

Causal Stable
Variable Prediction
- More direct logic:
Sample Independent : Stable
Reweighting Variables Prediction




Thinking from the Learning end

Problem 1. (Stable Learning) : Given the target y and p
input variables x = |1, ...,x,] € RP, the task is to learn

a predictive model which can achieve uniformly small error
/

small error

on any data point.

Ptrain (X) Ptest (x)

/ lange error

Zheyan Shen, Peng Cui, Tong Zhang. Stable Learning of Linear Models via Sample Reweighting. (under review)




Stable Learning of Linear Models

- Consider the linear regression with misspecification bias

Yy — 33TB1;p - Bo “|~‘€

[ Goes to infinity when perfect collinearity exists! ] [Bias term with bound b(x) < 6 ]

- By accurately estimé\fing\ 3 with the property that b(x) is uniformly
small for all x, we can achieve stable learning.

- However, the estimation error.caused by misspecification term can

be as bad as || 3 — ]| §[2(5/7) e 5_], where y? is the smallest
eigenvalue of centered covariance matrix.

Zheyan Shen, Peng Cui, Tong Zhang. Stable Learning of Linear Models via Sample Reweighting. (under review)




Toy Example

Assume the design matrix X consists of two variables X, X,,
generated from a multivariate normal distribution:

X ~ N(0,3), z:(l ”)
p 1

By changing p, we can simulate different extent of collinearity.

To induce bias related to collinearity, we generate bias term b(X)
with b(X) = Xv, where v is the eigenvector of centered covariance

matrix corresponding to its smallest eigenvalue 2.
The bias term is sensitive to collinearity.

Zheyan Shen, Peng Cui, Tong Zhang. Stable Learning of Linear Models via Sample Reweighting. (under review)



Simulation Results

/ large variance in dif ferent distributions

0.6 7

0.5 1

/ large error (estimation bias)

0.4 1 —
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Estimation Error
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y2
increase collinearity

Zheyan Shen, Peng Cui, Tong Zhang. Stable L}aarning of Linear Models via Sample Reweighting. (under review)



Reducing collinearity by sample reweighting

Idea: Learn a new set of sample weights w(x) to decorrelate the
input variables and increase the smallest eigenvalue

- Weighted Least Square Estimation

AN

: 2
B = arg HlBHl E(x)wD’w(l’) (fETﬁLp + Bo — y)

which is equivalent to

A

: 2

So, how to find an “oracle” distribution D which holds the desired
property?

Zheyan Shen, Peng Cui, Tong Zhang. Stable Learning of Linear Models via Sample Reweighting. (under review)



Sample Reweighted Decorrelation Operator (cont.)

(CL’H 12 ZBlp\ (5132'1 N o \
21 T2 ... Ty - L1 .. L sl
X = Decorrelation > X =
\mnl Ln2 .. CEnp) \mkl N i /

where i,j,k,r,s,t are drawn from 1 ...n at random

- By treating the different columns independently while performing
random resampling, we can obtain a column-decorrelated design
matrix with the same marginal as before.

- Then we can use density ratio estimation to get w(x).

Zheyan Shen, Peng Cui, Tong Zhang. Stable Learning of Linear Models via Sample Reweighting. (under review)



Experimental Results

- Simulation Study
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Zheyan Shen, Peng Cui, Tong Zhang. Stable Learning of Linear Models via Sample Reweighting. (under review)



Experimental Results

- Classification
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(a) AUC over different test environments. (b) Average AUC of all the environments

and stability.
Zheyan Shen, Peng Cui, Tong Zhang. Stable Learning of Linear Models via Sample Reweighting. (under review)



Disentanglement Representation Learning

From decorrelating input variables to learning
disentangled representation

- Learning Multiple Levels of Abstraction

- The big payoff of deep learning is to allow learning higher levels of
abstraction

- Higher-level abstractions disentangle the factor of variation,
which allows much easier generalization and transfer

Yoshua Bengio, From Deep Learning of Disentangled Representations to Higher-level Cognition. (2019). YouTube. Retrieved 22 February 2019.



Disentanglement for Causality

- Causal / mechanism independence
- Independently Controllable Factors

selectively chan% correspond to value

A policy m;, A representation f;

N \fr(s") — fr(9)]
N sst Zk’ |fk’(3,) - fk’(8)|

- Optimize both m;, and f;, to minimize

sel(s,a, k) = Eg

Esl3lls —g(f(s)3] — /\ZES[Z i (als)sel(s,a, k). ReCIUire subtle deSign on the
L,e the recm:srtruction error \k ‘ s/ pOllcy Set tO guarantee Causallty

TV
Lser the disentanglement objective




Sectional Summary

[0 Causal inference provide valuable insights for stable learning

0 Complete causal structure means data generation process,

necessarily leading to stable prediction
[0 Stable learning can also help to advance causal inference

0 Performance driven and practical applications

Benchmark is important!
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Non-I.I1.D. Image Classification

- Non L.I.D. Image Classification

l/)(Dtrain — (Xtrain» Ytrain)) * l/J(Dtest — (Xtest» Ytest))

- Two tasks

- Targeted Non-1.1.D. Image Classification
- Have prior knowledge on testing data
- e.g. transfer learning, domain adaptation

- General Non-1.1.D. Image Classification Dirain Dtest

- Testing is unknown, no prior
- more practical & realistic




Existence of Non-l.l.Dness

- One metric (NI) for Non-1.I.Dness

Definition 1 Non-1.1.D. Index (NI) Given a feature extractor qy( ) and a class C, the degree of
distribution shift between training data DE._. and testing data Dtegt is defined as:

train

Distribution shift

For normalization

- Existence of Non-1.I.Dness on Dataset consisted of 10 subclasses from ImageNet

- For each class
- Training data
- Testing data
- CNN for prediction

mmmm N1 of DatasetA  ==@==Error of DatasetA



Related Datasets

- DatasetA & DatasetB & DatasetC

- NI is ubiquitous, but small on these datasets
» Nl'is Uncontrollable, not friendly for Non |ID setting  Ayerage NI: 2.7

o ImageNet
35 -,

\

S~

\~~
————————

m DatasetA DatasetB m DatasetC

A dataset for Non-l.1.D. image classification is demanded.



NICO - Non-l.1.D. Image Dataset with Contexts

- NICO Datasets:
- Object label: e.g. dog

- Contextual labels (Contexts)
- the background or scene of a object, e.g. grass/water
|

- Structure of NICO
|
|

2 Superclasses

per
v

10 Classes

per

v

10 Contexts

Overlapping

Diverse &
Meaningful

<



E——— T
NICO - Non-l.I1.D. Image Dataset with Contexts

Animal DATA SIZE | Vehicle DATA SIZE
- Data size of each class in NICO s . |G i
) CaT 1479 Boar 2156
- Sample size: thousands for each class Cow 1192 | Bus 1009
DoG 1624 CAR 1026
. . i E 1178 | H 1351
Each superclass: 10,000 images e R e S5
- Sufficient for some basic neural networks (CNN) ot A ksl

SHEEP 018

- Samples with contexts in NICO

e

Dog

I
.

on grass in street running on snow

in cage

Horse | = 'll | :‘." ".-
1 i 1,-':

on beach in forest

o o s o —

running on snow

Boat

7

on beach cross bridge in city with people in river sailboat in sunset at wharf wooden yacht

{ Py



Controlling NI on NICO Dataset

-Minimum Bias (comparing with ImageNet)
-Proportional Bias (controllable)
- Number of samples in each context

-Compositional Bias (controllable)
- Number of contexts that observed




Minimum Bias

- In this setting, the way of random sampling leads to minimum distribution shift between
training and testing distributions in dataset, which simulates a nearly i.i.d. scenario.

- 8000 samples for training and 2000 samples for testing in each superclass (ConvNet)

Average NI Testing Accuracy
Animal 3.85 49.6%
Vehicle ~—__ 3.20 63.0%

Average NI on ImageNet: 2.7

_ more challenging for
Images in NICO image classification

are with rich contextual
information

Our NICO data is more Non-iid, more challenging




Proportional Bias

- Given a class, when sampling positive samples, we use all contexts for both training and
testing, but the percentage of each context is different between training and testing dataset.

L
NS

At home

on beach eating in cage in water

(5%)  (O%)  (5%)  (5%)

Dominate
Context (55%)
. . N Bt
Dominant Ratio = ok
N minor

We can control NI by varying dominate ratio

NI

lying

(5%)

45
44 |
43
42 t

4.1 r

4

Iy

in street running on snow

(5%) (5%)  (5%)

6:1

Dominant Ratio in Training Data



N, dominant

Compositional Bias AP

- Given a class, the observed contexts are different between training and testing data.

Training: Training:
Testing: Testing: E—
44 50 . Tlesting

1:1

4.8 .
4.6

4.34
NI 4.2 | NI 4.44
44
41
42
4.0
7 6 5 4 3

4.0
1:1 2:1 3:1 4:1 5:1
Number of Contexts in Training Data Dominant Ratio in Training data

4.3

v

Moderate setting Radical setting

(No Overlap &

JACIET) Dominant ratio)
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NICO - Non-l.1.D. Image Dataset with Contexts

- Large and controllable NI

Compositional Bias -
L

large NI

Proportional Bias

Minimum Bias

ImageNet |Sawa\| LargeNI | Controllable NI
0 2.5

small NI 2. 3.0 3.5 4.0 4.5 5.0 5.5

NI



NICO - Non-l.1.D. Image Dataset with Contexts

The dataset can be downloaded from (temporary address):

https://www.dropbox.com/sh/8mouawidguaupyb/AAD4fdySrAG6In3P
gSmhKwFgva?d|=0

Please refer to the following paper for detalils:

Yue He, Zheyan Shen, Peng Cui. NICO: A Dataset Towards Non-
|.1.D. Image Classification. https://arxiv.org/pdf/1906.02899.pdf
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Conclusions

- Predictive modeling 1s not only about Accuracy.
- Stability 1s critical for us to trust a predictive model.
- Causality has been demonstrated to be useful in stable prediction.

- How to marry causality with predictive modeling effectively and
efficiently is still an open problem.



COnCIUSiOnS Stable Learning

Disentangled Prediction
Learning

Global
Balancing
Linear Stable

Propensity e

Causal Inference Score

Direct Confounder
Debiasing Balancing
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Research Problems
Comes down to the Model
i Accuracy 1 —~ |.1.D. Learning
Accuracy 2
Stable
Accuracy 3 VAR (Acc) Prediction
Accuracy ”3 Transfer Learning

s
NICO - Non-L.1.D. Image Dataset with Contexts

Data size of each class in NICO
Sample size: thousands for each class
Each superclass: 10,000 images
Sufficient for some basic neural networks (CNN)

Samples with contexts in NICO

on beach

e m g
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