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ML techniques are impacting our life
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• A day in our life with ML techniques

8:30 am

8:00 am 10:00 am

4:00 pm

6:00 pm

8:00 pm



Now we are stepping into risk-sensitive areas
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Shifting from Performance Driven to Risk Sensitive



Problems of today’s ML - Explainability

4

Human in the loopUnexplainable

Health  Military  Finance  Industry

Most machine learning models are black-box models
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Most ML methods are developed under I.I.D hypothesis

Problems of today’s ML - Stability
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Yes

Maybe

No

Problems of today’s ML - Stability
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• Cancer survival rate prediction

Training Data

Predictive Model

Testing Data

City Hospital

University HospitalHigher income, higher survival rate.

City Hospital

Survival rate is not so correlated with income.

Problems of today’s ML - Stability
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A plausible reason: Correlation

Correlation is the very basics of machine learning.
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Correlation is not explainable
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Correlation is ‘unstable’
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It’s not the fault of correlation, but the way we use it

• Three sources of correlation:
• Causation

• Causal mechanism
• Stable and explainable

• Confounding
• Ignoring X
• Spurious Correlation

• Sample Selection Bias
• Conditional on S
• Spurious Correlation

T Y

T Y

X

T Y

S

Accepted

Income

Financial 
product offer

DogGrass

Sample 
Selection

Ice Cream 
SalesSummer



A Practical Definition of Causality
Definition: T causes Y if and only if 

changing T leads to a change in Y,
while keeping everything else constant.

Causal effect is defined as the magnitude by which Y is 
changed by a unit change in T.

Called the “interventionist” interpretation of causality.
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http://plato.stanford.edu/entries/causation-mani/

X

T Y
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The benefits of bringing causality into learning
Causal Framework

T：grass
X：dog nose
Y：label

Grass—Label: Strong correlation
Weak causation

Dog nose—Label: Strong correlation
Strong causation

X

T Y

More Explainable and More Stable
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The gap between causality and learning
pHow to evaluate the outcome? 
pWild environments

p High-dimensional
p Highly noisy
p Little prior knowledge (model specification, confounding structures)

p Targeting problems
p Understanding v.s. Prediction
p Depth v.s. Scale and Performance

How to bridge the gap between causality and (stable) learning?



Outline
ØCorrelation v.s. Causality
ØCausal Inference
ØStable Learning
ØNICO: An Image Dataset for Stable Learning
ØConclusions
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T Y

U Z W• Causal Identification with back 
door criterion

• Causal Estimation with do 
calculus

Paradigms - Structural Causal Model

A graphical model to describe the causal mechanisms of a system

How to discover the causal structure?
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• Causal Discovery
• Constraint-based: conditional independence 
• Functional causal model based

Paradigms – Structural Causal Model

A generative model with strong expressive power. 
But it induces high complexity. 



Paradigms - Potential Outcome Framework
• A simpler setting

• Suppose the confounders of T are known a priori

• The computational complexity is affordable
• Under stronger assumptions
• E.g. all confounders need to be observed
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More like a discriminative way to estimate treatment’s 
partial effect on outcome.



Causal Effect Estimation
• Treatment Variable: 𝑇 = 1 or 𝑇 = 0
• Treated Group (𝑇 = 1)  and Control Group (𝑇 = 0)
• Potential Outcome: 𝑌(𝑇 = 1) and 𝑌(𝑇 = 0)
• Average Causal Effect of Treatment (ATE):
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𝐴𝑇𝐸 = 𝐸[𝑌 𝑇 = 1 − 𝑌 𝑇 = 0 ]



Counterfactual Problem
• Two key points for causal effect 
estimation
• Changing T
• Keeping everything else constant

• For each person, observe only one: 
either 𝑌-./or 𝑌-.0

• For different group (T=1 and T=0), 
something else are not constant
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Person T 𝒀𝑻.𝟏 𝒀𝑻.𝟎
P1 1 0.4 ?
P2 0 ? 0.6
P3 1 0.3 ?
P4 0 ? 0.1
P5 1 0.5 ?
P6 0 ? 0.5
P7 0 ? 0.1



Ideal Solution: Counterfactual World
• Reason about a world that does not exist
• Everything in the counterfactual world is the same as the
real world, except the treatment
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𝑌 𝑇 = 1 𝑌 𝑇 = 0



Randomized Experiments are the “Gold Standard”

• Drawbacks of randomized experiments:
• Cost
• Unethical
• Unrealistic

22



Causal Inference with Observational Data
• Counterfactual Problem:

• Can we estimate ATE by directly comparing the average 
outcome between treated and control groups?
• Yes with randomized experiments (X are the same)
• No with observational data (X might be different)
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𝑌 𝑇 = 1 or 𝑌 𝑇 = 0



Confounding Effect
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weightsmoking

age

Balancing Confounders’ Distribution



Methods for Causal Inference

• Matching

• Propensity Score

• Directly Confounder Balancing
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Matching
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𝑇 = 0 𝑇 = 1



Matching
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Matching
• Identify pairs of treated (T=1) and control (T=0) units 
whose confounders X are similar or even identical to 
each other

• Paired units guarantee that the everything else 
(Confounders) approximate constant

• Small 𝜖: less bias, but higher variance
• Fit for low-dimensional settings
• But in high-dimensional settings, there will be few exact 
matches
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𝒊 𝒋𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑋A, 𝑋C ≤ 𝜖



Methods for Causal Inference

• Matching

• Propensity Score

• Directly Confounder Balancing

29



Propensity Score Based Methods
• Propensity score 𝑒(𝑋) is the probability of a unit to get treated

• Then, Donald Rubin shows that the propensity score is sufficient 
to control or summarize the information of confounders

• Propensity scores cannot be observed, need to be estimated
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𝑒 𝑋 = 	𝑃(𝑇 = 1|𝑋)

𝑇 ⫫ 𝑋	|	𝑒(𝑋) 𝑇 ⫫ (𝑌 1 , 𝑌(0))	|	𝑒(𝑋)



Propensity Score Matching
• Estimating propensity score:

• Supervised learning: predicting a known 
label T based on observed covariates X.

• Conventionally, use logistic regression
• Matching pairs by distance between 
propensity score:

• High dimensional challenge:
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𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑋A, 𝑋C ≤ 𝜖

𝑒̂ 𝑋 = 	𝑃(𝑇 = 1|𝑋)

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑋A, 𝑋C = |𝑒̂ 𝑋A − 𝑒̂ 𝑋C |

from matching to PS estimation
P. C. Austin. An introduction to propensity score methods for reducing the effects of confounding in observational studies. Multivariate behavioral research, 46(3):399–424, 2011.



Inverse of Propensity Weighting (IPW)
• Why weighting with inverse of propensity score?

• Propensity score induces the distribution bias on confounders X

32

Unit 𝒆(𝑿) 𝟏 − 𝒆(𝑿) #units #units
(T=1)

#units
(T=0)

A 0.7 0.3 10 7 3
B 0.6 0.4 50 30 20
C 0.2 0.8 40 8 32

𝑒 𝑋 = 	𝑃(𝑇 = 1|𝑋)

Reweighting by inverse of propensity score:

Unit #units
(T=1)

#units
(T=0)

A
B
C

𝑤A =
𝑇A
𝑒A
+
1 − 𝑇A
1 − 𝑒A

Confounders 
are the same!

10 10
50 50
40 40

Distribution Bias

P. R. Rosenbaum and D. B. Rubin. The central role of the propensity score in observational studies for causal effects. Biometrika, 70(1):41–55, 1983.



Inverse of Propensity Weighting (IPW)
• Estimating ATE by IPW [1]:

• Interpretation: IPW creates a pseudo-population where the 
confounders are the same between treated and control groups.

• But requires correct model specification for propensity score
• High variance when 𝑒 is close to 0 or 1
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𝑤A =
𝑇A
𝑒A
+
1 − 𝑇A
1 − 𝑒A

P. R. Rosenbaum and D. B. Rubin. The central role of the propensity score in observational studies for causal effects. Biometrika, 70(1):41–55, 1983.



Non-parametric solution
• Model specification problem is inevitable
• Can we directly learn sample weights that can balance 
confounders’ distribution between treated and control
groups?

34



Methods for Causal Inference

• Matching

• Propensity Score

• Directly Confounder Balancing
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Directly Confounder Balancing
• Motivation: The collection of all the moments of variables 
uniquely determine their distributions.

• Methods: Learning sample weights by directly balancing 
confounders’ moments as follows (ATT problem)
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The first moments of X 
on the Control Group

The first moments of X 
on the Treated Group

With moments, the sample weights can be learned 
without any model specification.

J. Hainmueller. Entropy balancing for causal effects: A mul- tivariate reweighting method to produce balanced samples in observational studies. Political Analysis, 20(1):25–46, 2012.



Entropy Balancing

• Directly confounder balancing by sample weights W
• Minimize the entropy of sample weights W
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Either know confounders a priori or regard all variables as confounders .
All confounders are balanced equally.

Athey S, et al. Approximate residual balancing: debiased inference of average treatment effects in high dimensions. Journal of the Royal Statistical Society: Series B, 2018, 80(4): 597-623.



Differentiated Confounder Balancing
•Idea: Different confounders make different confounding 
bias

•Simultaneously learn confounder weights 𝜷 and sample 
weighs 𝑾.

•Confounder weights determine which variable is 
confounder and its contribution on confounding bias.

•Sample weights are designed for confounder balancing.

38

Kun Kuang, Peng Cui, et al. 2017. Estimating Treatment Effect in the Wild via Differentiated Confounder Balancing, KDD 2017, 265–274.



Differentiated Confounder Balancing
• General relationship among	𝑋, 𝑇, and 𝑌:
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Confounding biasConfounder weights

If 𝛼Q = 0, then 𝑀Q is not confounder, no need to balance.
Different confounders have different confounding weights.

Kun Kuang, Peng Cui, et al. 2017. Estimating Treatment Effect in the Wild via Differentiated Confounder Balancing, KDD 2017, 265–274.



Differentiated Confounder Balancing
• Ideas: simultaneously learn confounder weights 𝜷 and sample 
weighs 𝑾.

• Confounder weights determine which variable is confounder and its 
contribution on confounding bias.

• Sample weights are designed for confounder balancing.

• The ENT algorithm is a special case of DCB algorithm by setting the 
confounder weights as unit vector.
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Kun Kuang, Peng Cui, et al. 2017. Estimating Treatment Effect in the Wild via Differentiated Confounder Balancing, KDD 2017, 265–274.



Experiments

41

LaLonde
Kun Kuang, Peng Cui, et al. 2017. Estimating Treatment Effect in the Wild via Differentiated Confounder Balancing, KDD 2017, 265–274.



Assumptions of Causal Inference
• A1: Stable Unit Treatment Value (SUTV): The effect of treatment on 
a unit is independent of the treatment assignment of other units

𝑃 𝑌A 𝑇A, 𝑇C, 𝑋A = 𝑃 𝑌A 𝑇A, 𝑋A

• A2: Unconfounderness: The distribution of treatment is independent 
of potential outcome when given the observed variables

𝑇 ⊥ 𝑌 0 , 𝑌 1 |	𝑋
No unmeasured confounders

• A3: Overlap: Each unit has nonzero probability to receive either 
treatment status when given the observed variables

0 < 𝑃 𝑇 = 1 𝑋 = 𝑥 < 1

42



Sectional Summary
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p Progress has been made to draw causality from 
big data.
p From single to group
p From binary to continuous
p Weak assumptions

Ready for Learning?



Outline
ØCorrelation v.s. Causality
ØCausal Inference
ØStable Learning
ØNICO: An Image Dataset for Stable Learning
ØFuture Directions and Conclusions

44



Stability and Prediction
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True Model

Learning Process
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Bin Yu (2016), Three Principles of Data Science: predictability, computability, stability



Stable Learning
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ModelDistribution 1

Distribution 1

Distribution 2

Distribution 3

Distribution n

…

Accuracy 1

Accuracy 2

Accuracy 3

Accuracy n

…

I.I.D. Learning

Transfer Learning

VAR (Acc) Stable 
Learning

Training

Testing



Stability and Robustness
• Robustness

• More on prediction performance over data perturbations
• Prediction performance-driven

• Stability
• More on the true model
• Lay more emphasis on Bias
• Sufficient for robustness

47

Stable learning is a (intrinsic?) way to realize robust prediction



Stability

•Statistical stability holds if statistical conclusions are
robust to appropriate perturbations to data.
• Prediction Stability
• Estimation Stability



Prediction Stability
• Lasso

• Prediction Stability by Cross-Validation
• n data units are randomly partitioned into V blocks, each block
has d = [n/V] units.

• Leave one out: training on (n-d) units, validating on d units.
• CV does not provide a good interpretable model because
Lasso+CV is unstable.

49



Estimation Stability
• Estimation Stability:

• Mean regression function:

• Variance of function m:

• Estimation Stability:

50

ES+CV is better than Lasso+CV



Domain Generalization / Invariant Learning

51

• Given data from different 
observed environments          :

• The task is to predict Y given X 
such that the prediction works 
well (is “robust”) for “all possible” 
(including unseen) environments



Domain Generalization
• Assumption: the conditional probability P(Y|X) is stable or 
invariant across different environments.

• Idea: taking knowledge acquired from a number of related domains 
and applying it to previously unseen domains

• Theorem: Under reasonable technical assumptions. Then with 
probability at least

52

Muandet K, Balduzzi D, Schölkopf B. Domain generalization via invariant feature. ICML 2013.



Invariant Prediction
• Invariant Assumption: There exists a subset 𝑆 ∈ 𝑋 is causal for the prediction 

of 𝑌, and the conditional distribution P(Y|S) is stable across all environments.

• Idea: Linking to causality
• Structural Causal Model (Pearl 2009): 
• The parent variables of Y in SCM satisfies Invariant Assumption
• The causal variables lead to invariance w.r.t. “all” possible environments

53

Peters, J., Bühlmann, P., & Meinshausen, N. (2016). Causal inference by using invariant prediction: identification and 
confidence intervals. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 2016



From Variable Selection to Sample Reweighting
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X

T Y

Typical Causal Framework

Sample reweighting can make a variable independent of other 
variables. 

Directly Confounder Balancing

Given a feature T

Assign different weights to samples so that
the samples with T and the samples without

T have similar distributions in X

Calculate the difference of Y distribution in
treated and controlled groups. (correlation

between T and Y)



Global Balancing: Decorrelating Variables
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X

T Y

Typical Causal Framework

Partial effect can be regarded as causal effect. Predicting with causal 
variables is stable across different environments.

Global Balancing

Given ANY feature T

Assign different weights to samples so that the
samples with T and the samples without T have

similar distributions in X

Calculate the difference of Y distribution in
treated and controlled groups. (correlation

between T and Y)

Kun Kuang, Peng Cui, Susan Athey, Ruoxuan Li, Bo Li. Stable Prediction across Unknown Environments. KDD, 2018.



Theoretical Guarantee
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Kun Kuang, Peng Cui, Susan Athey, Ruoxuan Li, Bo Li. Stable Prediction across Unknown Environments. KDD, 2018.

à

0



Causal Regularizer
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All features
excluding

treatment j

Set feature j as treatment variable

Sample
Weights

Indicator of
treatment

status

Zheyan Shen, Peng Cui, Kun Kuang, Bo Li. Causally Regularized Learning on Data with Agnostic Bias. ACM MM, 2018.



Causally Regularized Logistic Regression
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Sample
reweighted
logistic loss

Causal
Contribution

Zheyan Shen, Peng Cui, Kun Kuang, Bo Li. Causally Regularized Learning on Data with Agnostic Bias. ACM MM, 2018.



From Shallow to Deep - DGBR
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Kun Kuang, Peng Cui, Susan Athey, Ruoxuan Li, Bo Li. Stable Prediction across Unknown Environments. KDD, 2018.



Experiment 1 – non-i.i.d. image classification
• Source: YFCC100M
• Type: high-resolution and multi-tags
• Scale: 10-category, each with nearly 1000 images
• Method: select 5 context tags which are frequently co-occurred with 

the major tag (category label)

60



Experimental Result - insights



Experimental Result - insights
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Experiment 2 – online advertising
• Environments generating:

• Separate the whole dataset into 4 environments by users’ age, including
𝐴𝑔𝑒 ∈ [20,30), 𝐴𝑔𝑒 ∈ [30,40), 𝐴𝑔𝑒 ∈ [40,50), and 𝐴𝑔𝑒 ∈ [50,100).
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From Causal problem to Learning problem
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• Previous logic:

• More direct logic:

Sample
Reweighting

Independent
Variables

Causal
Variable

Stable
Prediction

Sample
Reweighting

Independent
Variables

Stable
Prediction



Thinking from the Learning end
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𝑃-]^A_(𝑥) 𝑃-`a-(𝑥)

𝑠𝑚𝑎𝑙𝑙	𝑒𝑟𝑟𝑜𝑟

𝑙𝑎𝑟𝑔𝑒	𝑒𝑟𝑟𝑜𝑟

Zheyan Shen, Peng Cui, Tong Zhang. Stable Learning of Linear Models via Sample Reweighting. (under review)



Stable Learning of Linear Models 

• Consider the linear regression with misspecification bias

• By accurately estimating     with the property that 𝑏 𝑥 is uniformly 
small for all 𝑥, we can achieve stable learning.

• However, the estimation error caused by misspecification term can 
be as bad as                                      , where	𝛾h is the smallest 
eigenvalue of centered covariance matrix.
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Bias term with bound 𝑏 𝑥 ≤ 𝛿Goes to infinity when perfect collinearity exists!

Zheyan Shen, Peng Cui, Tong Zhang. Stable Learning of Linear Models via Sample Reweighting. (under review)



Toy Example
• Assume the design matrix 𝑋 consists of two variables 𝑋/, 𝑋h, 
generated from a multivariate normal distribution:

• By changing 𝜌, we can simulate different extent of collinearity.
• To induce bias related to collinearity, we generate bias term 𝑏 𝑋
with 𝑏 𝑋 = 𝑋𝑣, where 𝑣 is the eigenvector of centered covariance 
matrix corresponding to its smallest eigenvalue 𝛾h.

• The bias term is sensitive to collinearity.
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Zheyan Shen, Peng Cui, Tong Zhang. Stable Learning of Linear Models via Sample Reweighting. (under review)



Simulation Results
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𝑙𝑎𝑟𝑔𝑒	𝑒𝑟𝑟𝑜𝑟	(𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑖𝑜𝑛	𝑏𝑖𝑎𝑠)

𝑙𝑎𝑟𝑔𝑒	𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒	𝑖𝑛	𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡	𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛𝑠

𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒	𝑐𝑜𝑙𝑙𝑖𝑛𝑒𝑎𝑟𝑖𝑡𝑦
Zheyan Shen, Peng Cui, Tong Zhang. Stable Learning of Linear Models via Sample Reweighting. (under review)



Reducing collinearity by sample reweighting
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Idea: Learn a new set of sample weights 𝑤(𝑥) to decorrelate the 
input variables and increase the smallest eigenvalue
• Weighted Least Square Estimation

which is equivalent to

So, how to find an “oracle” distribution     which holds the desired   
property?

Zheyan Shen, Peng Cui, Tong Zhang. Stable Learning of Linear Models via Sample Reweighting. (under review)



Sample Reweighted Decorrelation Operator (cont.)
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Decorrelation

where 𝑖, 𝑗, 𝑘, 𝑟, 𝑠, 𝑡 are drawn from 1…𝑛 at random

• By treating the different columns independently while performing 
random resampling, we can obtain a column-decorrelated design 
matrix with the same marginal as before.

• Then we can use density ratio estimation to get 𝑤(𝑥).   
Zheyan Shen, Peng Cui, Tong Zhang. Stable Learning of Linear Models via Sample Reweighting. (under review)



Experimental Results 
• Simulation Study
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Zheyan Shen, Peng Cui, Tong Zhang. Stable Learning of Linear Models via Sample Reweighting. (under review)



Experimental Results
• Regression
• Classification
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• Regression
• Classification

Zheyan Shen, Peng Cui, Tong Zhang. Stable Learning of Linear Models via Sample Reweighting. (under review)



Disentanglement Representation Learning

• Learning Multiple Levels of Abstraction
• The big payoff of deep learning is to allow learning higher levels of 
abstraction

• Higher-level abstractions disentangle the factor of variation, 
which allows much easier generalization and transfer

73

Yoshua Bengio, From Deep Learning of Disentangled Representations to Higher-level Cognition. (2019). YouTube. Retrieved 22 February 2019.

From decorrelating input variables to learning 
disentangled representation 



Disentanglement for Causality
• Causal / mechanism independence

• Independently Controllable Factors (Thomas, Bengio et al.,  2017)

• Optimize both 𝜋Q and 𝑓Q	to minimize

74

A policy 𝜋Q A representation 𝑓Q

selectively change correspond to value 

Require subtle design on the 
policy set to guarantee causality.



Sectional Summary
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p Causal inference provide valuable insights for stable learning

p Complete causal structure means data generation process, 

necessarily leading to stable prediction

p Stable learning can also help to advance causal inference

p Performance driven and practical applications

Benchmark is important!



Outline
ØCorrelation v.s. Causality
ØCausal Inference
ØStable Learning
ØNICO: An Image Dataset for Stable Learning
ØFuture Directions and Conclusions
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Non-I.I.D. Image Classification
• Non I.I.D. Image Classification

• Two tasks
• Targeted Non-I.I.D. Image Classification

• Have prior knowledge on testing data
• e.g. transfer learning, domain adaptation

• General Non-I.I.D. Image Classification
• Testing is unknown, no prior
• more practical & realistic 

77

𝜓(𝐷-]^A_ = 𝑋-]^A_, 𝑌-]^A_ ) ≠ 𝜓(𝐷-`a- = 𝑋-`a-, 𝑌-`a- )

unknown

known

𝐷-]^A_ 𝐷-`a-



Existence of Non-I.I.Dness
• One metric (NI) for Non-I.I.Dness

• Existence of Non-I.I.Dness on Dataset consisted of 10 subclasses from ImageNet
• For each class

• Training data
• Testing data
• CNN for prediction

78

ubiquitous

strong correlation 

Distribution shift

For normalization



Related Datasets
• DatasetA & DatasetB & DatasetC

• NI is ubiquitous, but small on these datasets
• NI is Uncontrollable, not friendly for Non IID setting

79

Small NI    

A dataset for Non-I.I.D. image classification is demanded.

ImageNet

PASCAL 
VOC MSCOCO

Uncontrollable NI

Average NI: 2.7



NICO - Non-I.I.D. Image Dataset with Contexts
• NICO Datasets:
• Object label: e.g. dog
• Contextual labels (Contexts)

• the background or scene of a object, e.g. grass/water
• Structure of NICO

80

Animal Vehicle

Dog …

…

Train

Grass on bridge…

…

2 Superclasses

10 Classes

10 Contexts

per

per Diverse & 
Meaningful

Overlapping



NICO - Non-I.I.D. Image Dataset with Contexts
• Data size of each class in NICO

• Sample size: thousands for each class
• Each superclass: 10,000 images
• Sufficient for some basic neural networks (CNN)

• Samples with contexts in NICO

81



Controlling NI on NICO Dataset

•Minimum Bias (comparing with ImageNet)
•Proportional Bias (controllable)

• Number of samples in each context
•Compositional Bias (controllable)

• Number of contexts that observed

82



Minimum Bias
• In this setting, the way of random sampling leads to minimum distribution shift between 

training and testing distributions in dataset, which simulates a nearly i.i.d. scenario.

• 8000 samples for training and 2000 samples for testing in each superclass (ConvNet)

83

Average NI Testing Accuracy
Animal 3.85 49.6%
Vehicle 3.20 63.0%

Images in NICO
are with rich contextual 

information

more challenging for
image classification

Average NI on ImageNet: 2.7

Our NICO data is more Non-iid, more challenging



Proportional Bias
• Given a class, when sampling positive samples, we use all contexts for both training and 

testing, but the percentage of each context is different between training and testing dataset. 

84

4

4.1

4.2

4.3

4.4

4.5

1:1 2:1 3:1 4:1 5:1 6:1

NI

Dominant Ratio in Training Data

Testing 
1 : 1  

Dominate
Context (55%)

(5%) (5%) (5%) (5%) (5%) (5%) (5%) (5%) (5%)

We can control NI by varying dominate ratio



Compositional Bias
• Given a class, the observed contexts are different between training and testing data.
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Moderate setting
(Overlap) 

Radical setting
(No Overlap & 
Dominant ratio) 

4.44

4.0 

4.2 

4.4 

4.6 

4.8 

5.0 

1:1 2:1 3:1 4:1 5:1

NI

Dominant Ratio in Training data

4.34

4.0 

4.1 

4.2 

4.3 

4.4 

7 6 5 4 3

NI

Number of  Contexts in Training Data 

Training:
Testing:

Training:

Testing:

Testing 
1 : 1  



NICO - Non-I.I.D. Image Dataset with Contexts
• Large and controllable NI
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NICO - Non-I.I.D. Image Dataset with Contexts
• The dataset can be downloaded from (temporary address):
• https://www.dropbox.com/sh/8mouawi5guaupyb/AAD4fdySrA6fn3P
gSmhKwFgva?dl=0

• Please refer to the following paper for details:
• Yue He, Zheyan Shen, Peng Cui. NICO: A Dataset Towards Non-
I.I.D. Image Classification. https://arxiv.org/pdf/1906.02899.pdf
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Outline
ØCorrelation v.s. Causality
ØCausal Inference
ØStable Learning
ØNICO: An Image Dataset for Stable Learning
ØConclusions
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Conclusions
• Predictive modeling is not only about Accuracy.
• Stability is critical for us to trust a predictive model.
• Causality has been demonstrated to be useful in stable prediction.
• How to marry causality with predictive modeling effectively and 
efficiently is still an open problem.
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