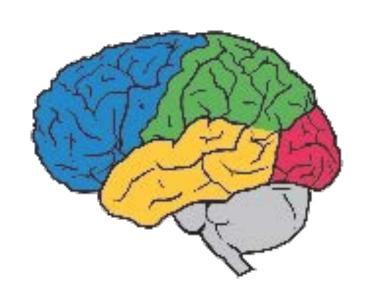
Meta-Learning: from Few-Shot Learning to Rapid Reinforcement Learning

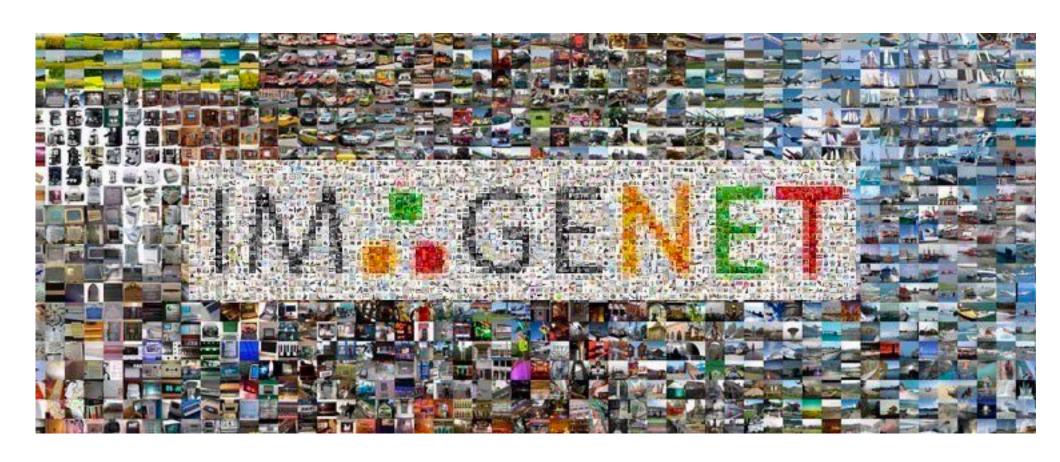
Chelsea Finn

Sergey Levine



Large, diverse data (+ large models)

Broad generalization



Russakovsky et al. '14

GPT-2

Radford et al. '19

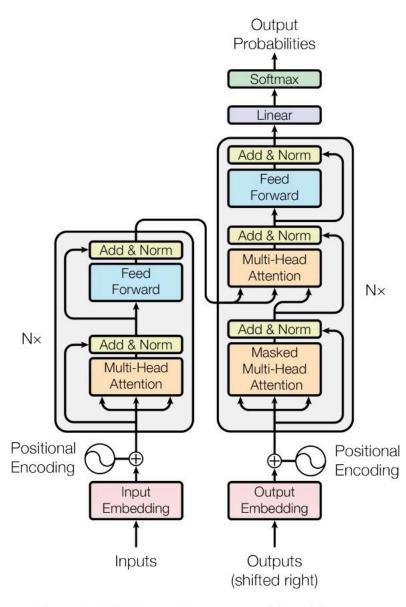


Figure 1: The Transformer - model architecture.

Vaswani et al. '18

Under the paradigm of supervised learning.

What if you don't have a large dataset?

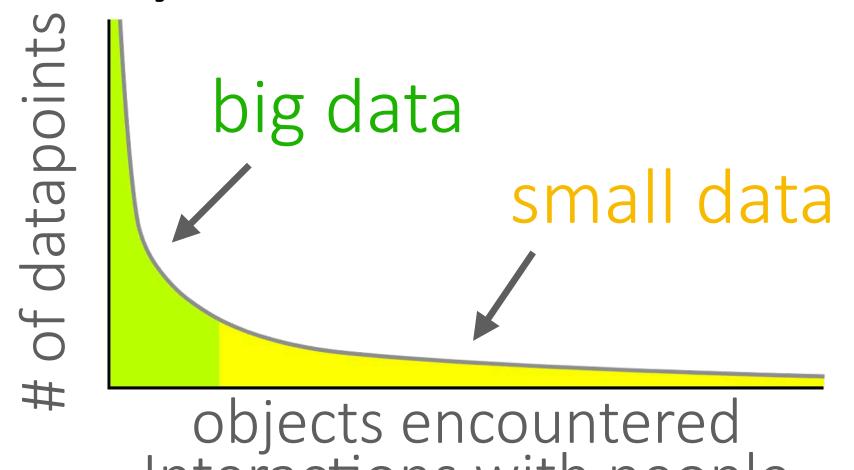
medical imaging robotics personalized education,

translation for rare languages recommendations

What if you want a general-purpose Al system in the real world?

Need to continuously adapt and learn on the job. Learning each thing from scratch won't cut it.

What if your data has a long tail?



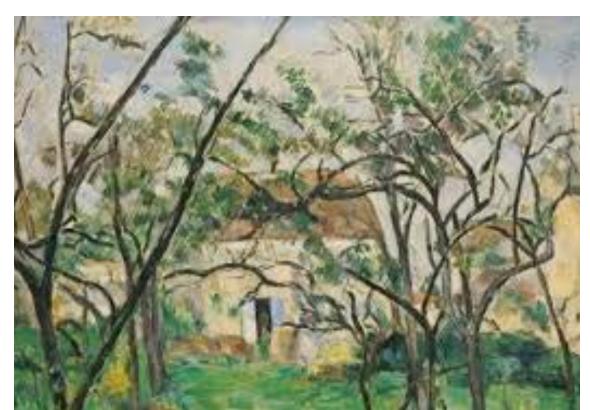
These settings break the supervised learning paradigm.

Qs: slido.com/meta driving scenarios

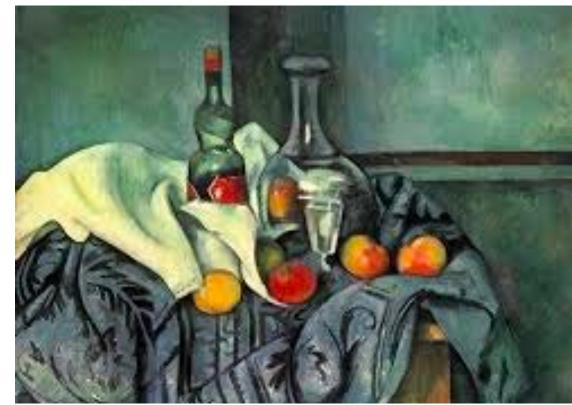
training data

Cezanne

Braque







test datapoint

By Braque or Cezanne?

How did you accomplish this?

Through previous experience.

How might you get a machine to accomplish this task?

Modeling image formation

Geometry

SIFT features, HOG features + SVM

Fine-tuning from ImageNet features
Domain adaptation from other painters

Fewer human priors, more data-driven priors

Greater success.

555

Can we explicitly learn priors from previous experience that lead to efficient downstream learning?

Qs: slido.com/meta Can we learn to learn?

Outline

- Problem statement
- Meta-learning algorithms
 - Black-box adaptation
 - Optimization-based inference
 - Non-parametric methods
 - Bayesian meta-learning
- Meta-learning applications
 - 5 min break —
- Meta-reinforcement learning
- Challenges & frontiers

Qs: <u>slido.com/meta</u>

Two ways to view meta-learning

Mechanistic view

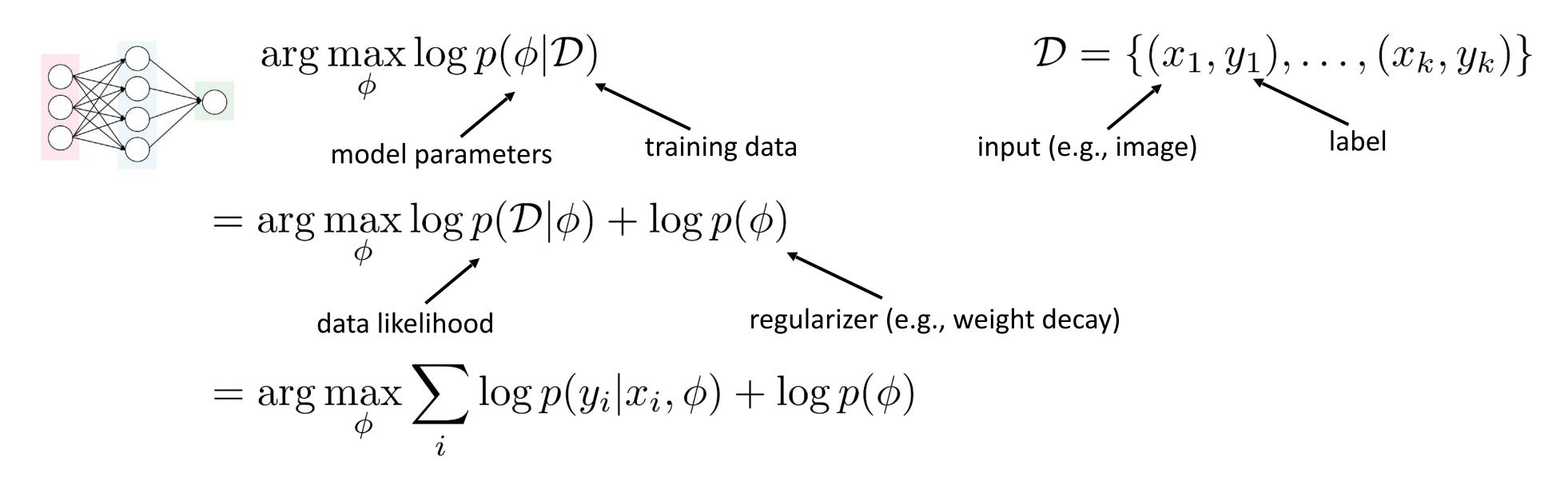
- Deep neural network model that can read in an entire dataset and make predictions for new datapoints
- Training this network uses a meta-dataset, which itself consists of many datasets, each for a different task
- > This view makes it easier to implement metalearning algorithms

Probabilistic view

- > Extract prior information from a set of (meta-training) tasks that allows efficient learning of new tasks
- ➤ Learning a new task uses this prior and (small) training set to infer most likely posterior parameters
- > This view makes it easier to understand metalearning algorithms

Problem definitions

supervised learning:



What is wrong with this?

- > The most powerful models typically require large amounts of labeled data
- > Labeled data for some tasks may be very limited

Problem definitions

supervised learning:

$$\arg\max_{\phi}\log p(\phi|\mathcal{D})$$

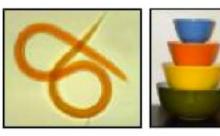
can we incorporate additional data?

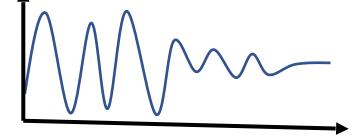
$$\arg\max_{\phi}\log p(\phi|\mathcal{D},\mathcal{D}_{\text{meta-train}})$$

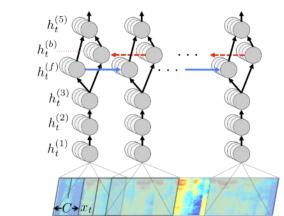
$$\mathcal{D} = \{(x_1, y_1), \dots, (x_k, y_k)\}\$$

$$\mathcal{D}_{ ext{meta-train}} = \{\mathcal{D}_1, \dots, \mathcal{D}_n\}$$

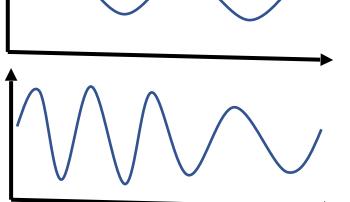
$$\mathcal{D}_i = \{(x_1^i, y_1^i), \dots, (x_k^i, y_k^i)\}$$

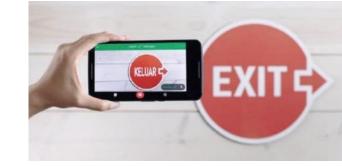






$$\mathcal{D}_2$$





Qs: slido.com/meta

Image adapted from Ravi & Larochelle

The meta-learning problem

meta-learning:

$$\arg\max_{\phi}\log p(\phi|\mathcal{D},\mathcal{D}_{\text{meta-train}})$$

$$\mathcal{D} = \{(x_1, y_1), \dots, (x_k, y_k)\}\$$

$$\mathcal{D}_{ ext{meta-train}} = \{\mathcal{D}_1, \dots, \mathcal{D}_n\}$$

$$\mathcal{D}_i = \{(x_1^i, y_1^i), \dots, (x_k^i, y_k^i)\}$$

what if we don't want to keep $\mathcal{D}_{\text{meta-train}}$ around forever?

learn
$$meta\text{-}parameters \theta$$
: $p(\theta|\mathcal{D}_{\text{meta-train}})$

whatever we need to know about $\mathcal{D}_{\text{meta-train}}$ to solve new tasks

whatever we need to know about $\mathcal{D}_{\text{meta-train}}$ to solve new tasks assume $\phi \perp \perp \mathcal{D}_{\text{meta-train}} | \theta$ $\log p(\phi|\mathcal{D}, \mathcal{D}_{\text{meta-train}}) = \log \int_{\Theta} p(\phi|\mathcal{D}, \theta) p(\theta|\mathcal{D}_{\text{meta-train}}) d\theta$ $\theta^* = \arg \max_{\theta} \log p(\theta|\mathcal{D}_{\text{meta-train}})$

$$\approx \log p(\phi|\mathcal{D}, \theta^*) + \log p(\theta^*|\mathcal{D}_{\text{meta-train}})$$

$$\arg\max_{\phi} \log p(\phi|\mathcal{D}, \mathcal{D}_{\text{meta-train}}) \approx \arg\max_{\phi} \log p(\phi|\mathcal{D}, \theta^{\star})$$

Qs: slido.com/meta

this is the meta-learning problem

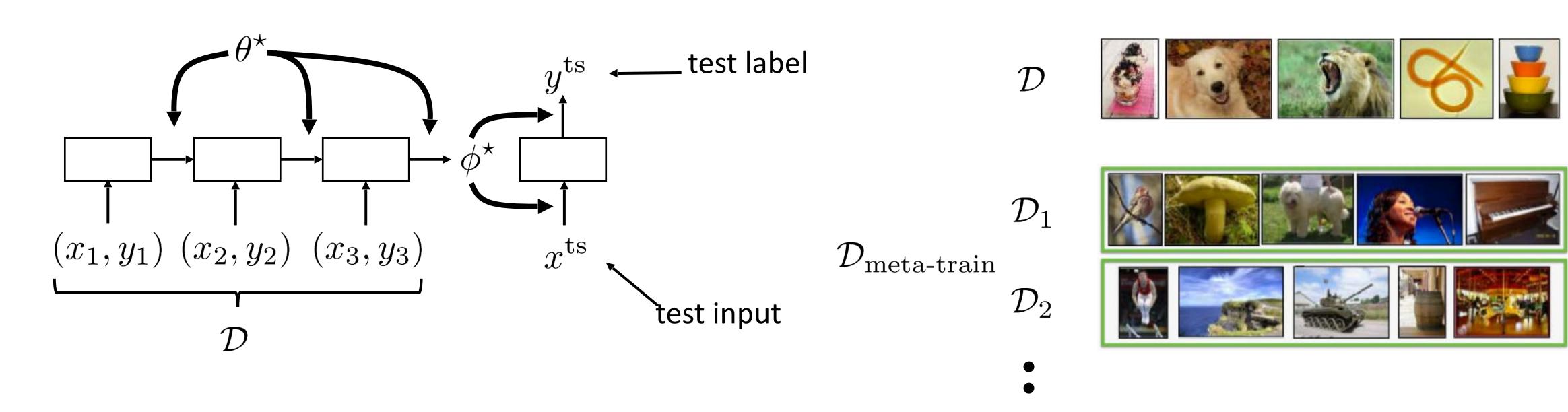
A Quick Example

meta-learning: $\theta^* = \arg \max_{\theta} \log p(\theta | \mathcal{D}_{\text{meta-train}})$

adaptation: $\phi^* = \arg \max_{\phi} \log p(\phi | \mathcal{D}, \theta^*)$

$$\mathcal{D} = \{(x_1, y_1), \dots, (x_k, y_k)\}$$
 $\mathcal{D}_{\text{meta-train}} = \{\mathcal{D}_1, \dots, \mathcal{D}_n\}$

$$\mathcal{D}_i = \{(x_1^i, y_1^i), \dots, (x_k^i, y_k^i)\}$$



How do we train this thing?

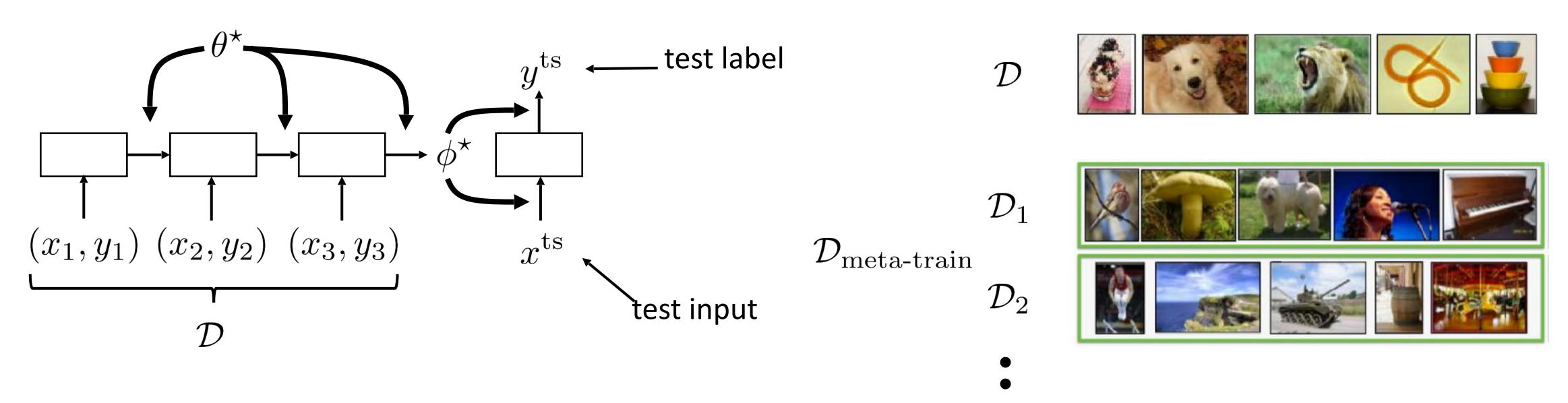
meta-learning: $\theta^* = \arg \max_{\theta} \log p(\theta | \mathcal{D}_{\text{meta-train}})$

adaptation: $\phi^* = \arg \max_{\phi} \log p(\phi | \mathcal{D}, \theta^*)$

$$\mathcal{D} = \{(x_1, y_1), \dots, (x_k, y_k)\}\$$

$$\mathcal{D}_{ ext{meta-train}} = \{\mathcal{D}_1, \dots, \mathcal{D}_n\}$$

$$\mathcal{D}_i = \{(x_1^i, y_1^i), \dots, (x_k^i, y_k^i)\}$$



Key idea:

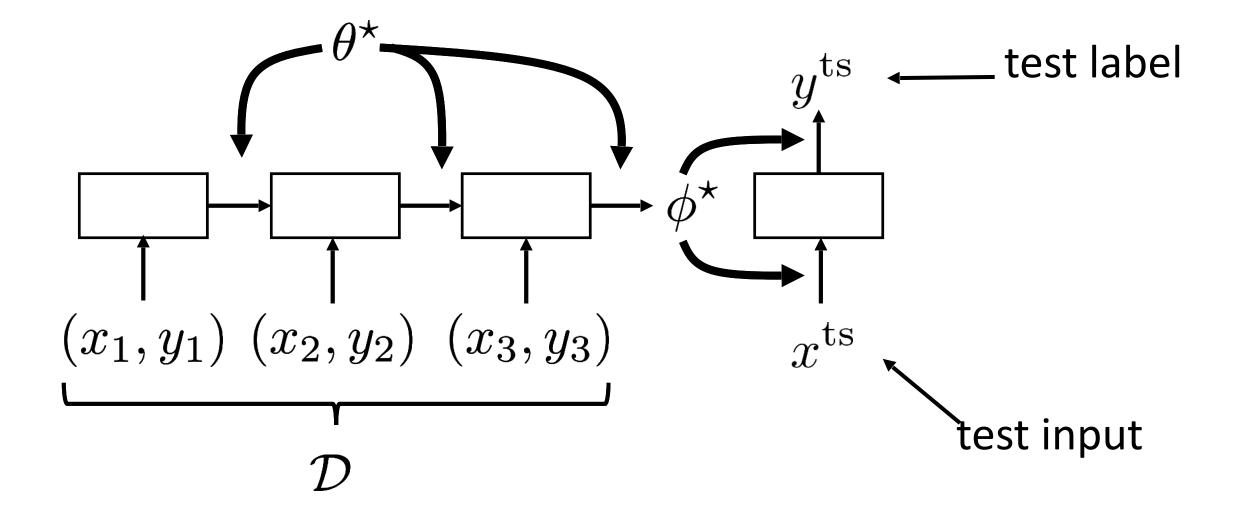
"our training procedure is based on a simple machine learning principle: test and train conditions must match"

Vinyals et al., Matching Networks for One-Shot Learning

How do we train this thing?

meta-learning:
$$\theta^* = \arg \max_{\theta} \log p(\theta | \mathcal{D}_{\text{meta-train}})$$

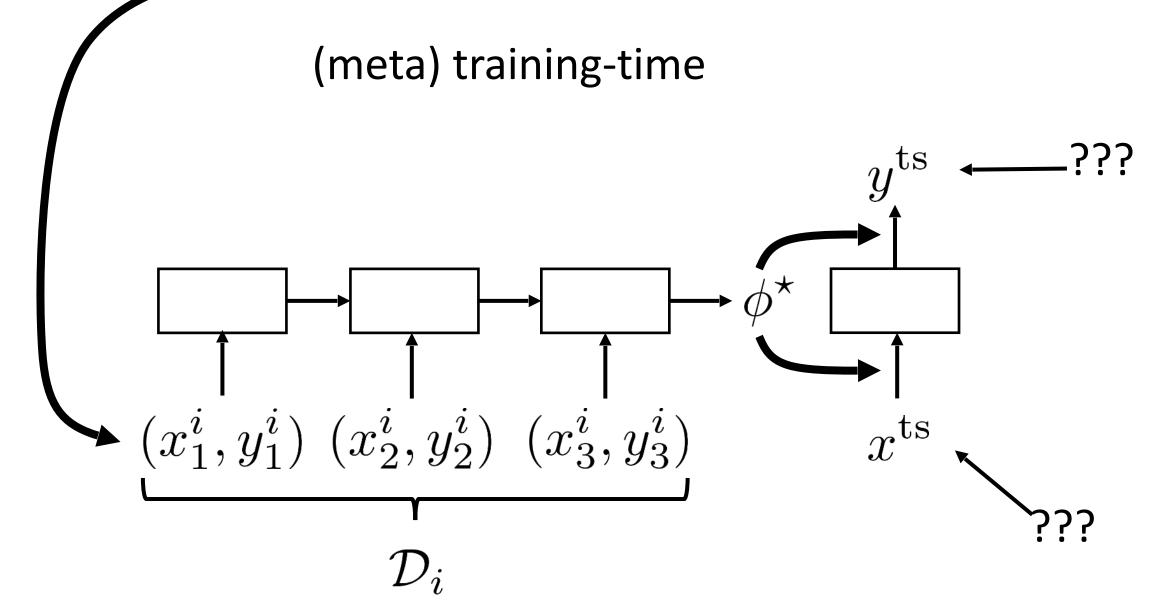
adaptation:
$$\phi^* = \arg\max_{\phi} \log p(\phi|\mathcal{D}, \theta^*)$$
 (meta) test-time



$$\mathcal{D} = \{(x_1, y_1), \dots, (x_k, y_k)\}\$$

$$\mathcal{D}_{ ext{meta-train}} = \{\mathcal{D}_1, \dots, \mathcal{D}_n\}$$

$$\mathcal{D}_i = \{(x_1^i, y_1^i), \dots, (x_k^i, y_k^i)\}$$



Key idea:

"our training procedure is based on a simple machine learning principle: test and train conditions must match"

Vinyals et al., Matching Networks for One-Shot Learning

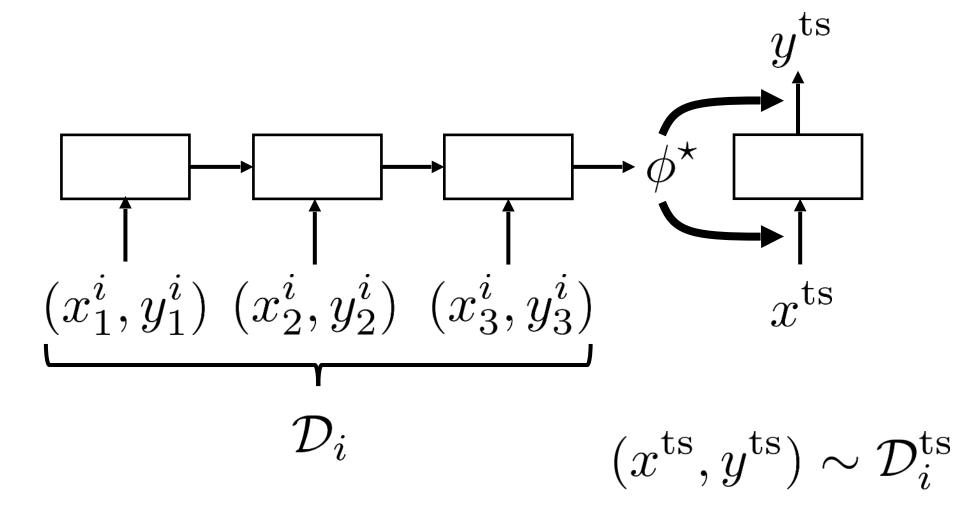
Reserve a test set for each task!

(meta) training-time

$$\mathcal{D}_{ ext{meta-train}} = \{(\mathcal{D}_1^{ ext{tr}}, \mathcal{D}_1^{ ext{ts}}), \dots, (\mathcal{D}_n^{ ext{tr}}, \mathcal{D}_n^{ ext{ts}})\}$$

$$\mathcal{D}_i^{\text{tr}} = \{(x_1^i, y_1^i), \dots, (x_k^i, y_k^i)\}$$

$$\mathcal{D}_i^{\text{ts}} = \{(x_1^i, y_1^i), \dots, (x_l^i, y_l^i)\}$$



Key idea:

"our training procedure is based on a simple machine learning principle: test and train conditions must match"

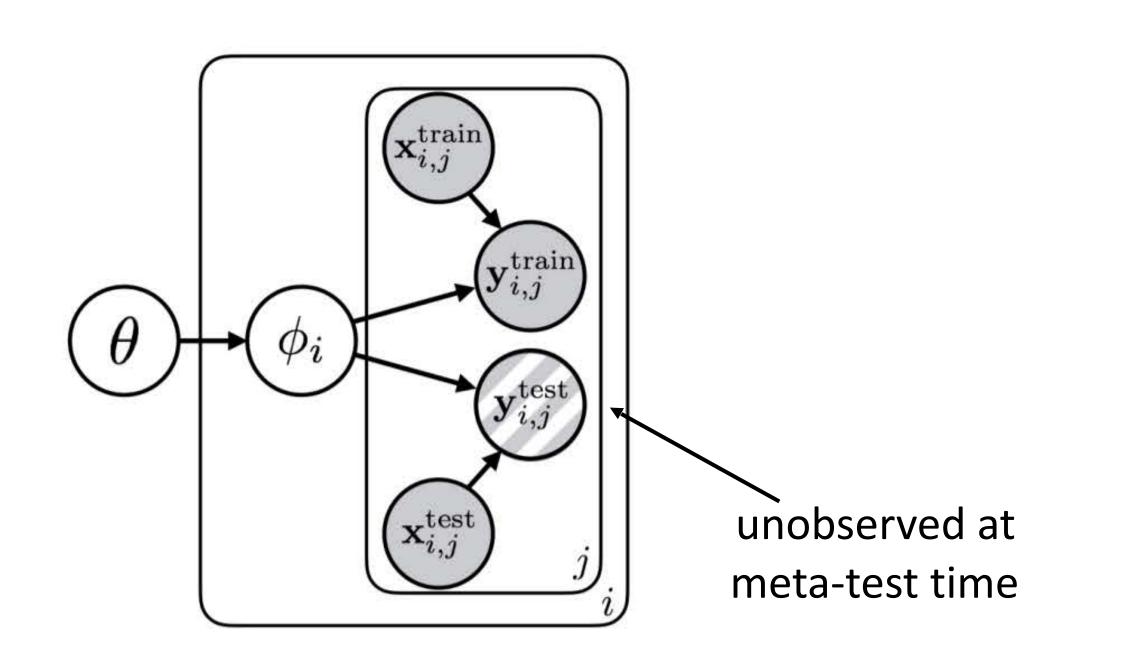
Vinyals et al., Matching Networks for One-Shot Learning

The complete meta-learning optimization

learn θ such that $\phi = f_{\theta}(\mathcal{D}_i^{\text{tr}})$ is good for $\mathcal{D}_i^{\text{ts}}$

$$\theta^* = \max_{\theta} \sum_{i=1}^{n} \log p(\phi_i | \mathcal{D}_i^{\text{ts}})$$
where $\phi_i = f_{\theta}(\mathcal{D}_i^{\text{tr}})$

$$\mathcal{D}_{ ext{meta-train}} = \{ (\mathcal{D}_1^{ ext{tr}}, \mathcal{D}_1^{ ext{ts}}), \dots, (\mathcal{D}_n^{ ext{tr}}, \mathcal{D}_n^{ ext{ts}}) \}$$
 $\mathcal{D}_i^{ ext{tr}} = \{ (x_1^i, y_1^i), \dots, (x_k^i, y_k^i) \}$
 $\mathcal{D}_i^{ ext{ts}} = \{ (x_1^i, y_1^i), \dots, (x_l^i, y_l^i) \}$



Some meta-learning terminology

image credit: Ravi & Larochelle '17

learn θ such that $\phi_i = f_{\theta}(\mathcal{D}_i^{\text{tr}})$ is good for $\mathcal{D}_i^{\text{ts}}$ $\mathcal{D}_{\text{meta-train}} = \{ (\mathcal{D}_1^{\text{tr}}, \mathcal{D}_1^{\text{ts}}), \dots, (\mathcal{D}_n^{\text{tr}}, \mathcal{D}_n^{\text{ts}}) \}$ $\mathcal{T}_i = \{(x_1^i, y_1^i), \dots, (x_k^i, y_k^i)\}$ $\mathcal{D}_i^{\text{ts}} = \{(x_1^i, y_1^i), \dots, (x_l^i, y_l^i)\}$ shot $\theta^* = \arg\max_{\theta} \sum_{i=1}^{\infty} \log p(\phi_i | \mathcal{D}_i^{\mathrm{ts}})$ where $\phi_i = f_{\theta}(\mathcal{D}_i^{\mathrm{tr}})$ (i.e., k-shot, 5-shot) (meta-training) task \mathcal{T}_i training data test set $\mathcal{D}_{ ext{meta-train}}$ meta-training (meta-test) task support (set) query

Closely related problem settings

meta-learning:

$$\theta^* = \max_{\theta} \sum_{i=1}^n \log p(\phi_i | \mathcal{D}_i^{\text{ts}})$$

where
$$\phi_i = f_{\theta}(\mathcal{D}_i^{\text{tr}})$$

$$\mathcal{D}_{ ext{meta-train}} = \{(\mathcal{D}_1^{ ext{tr}}, \mathcal{D}_1^{ ext{ts}}), \dots, (\mathcal{D}_n^{ ext{tr}}, \mathcal{D}_n^{ ext{ts}})\}$$

$$\mathcal{D}_i^{\text{tr}} = \{(x_1^i, y_1^i), \dots, (x_k^i, y_k^i)\}$$

$$\mathcal{D}_i^{\text{ts}} = \{(x_1^i, y_1^i), \dots, (x_l^i, y_l^i)\}$$

multi-task learning: learn model with parameters θ^* that solves multiple tasks $\theta^* = \arg\max_{\theta} \sum_{i=1}^n \log p(\theta|\mathcal{D}_i)$ can be seen as special case where $\phi_i = \theta$ (i.e., $f_{\theta}(\mathcal{D}_i) = \theta$)

hyperparameter optimization & auto-ML: can be cast as meta-learning

hyperparameter optimization: θ = hyperparameters, ϕ = network weights

architecture search: θ = architecture, ϕ = network weights

very active area of research! but outside the scope of this tutorial

Outline

- Problem statement
- Meta-learning algorithms
 - Black-box adaptation
 - Optimization-based inference
 - Non-parametric methods
 - Bayesian meta-learning
- Meta-learning applications
 - 5 min break —
- Meta-reinforcement learning
- Challenges & frontiers

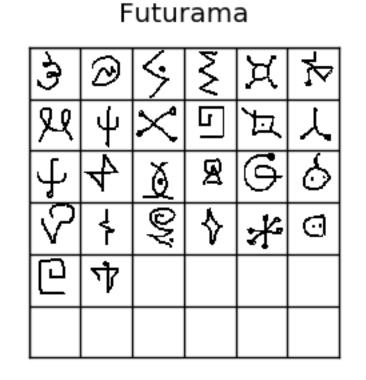
General recipe

How to evaluate a meta-learning algorithm

the Omniglot dataset Lake et al. Science 2015

1623 characters from 50 different alphabets

Hebiew				
Ü	D	ב	了	٦
ን	\mathcal{A}	7	ላ	刀
٦	厂	እ	7	3
Ţ	T	Q	7	Ŋ
	ነ			



many classes, few examples

the "transpose" of MNIST

statistics more reflective of the real world

20 instances of each character

Proposes both few-shot discriminative & few-shot generative problems

Initial few-shot learning approaches w/ Bayesian models, non-parametrics Fei-Fei et al. '03 Lake et al. '11 Salakhutdinov et al. '12 Lake et al. '13

Other datasets used for few-shot image recognition: MiniImagenet, CIFAR, CUB, CelebA, others

General recipe

How to evaluate a meta-learning algorithm

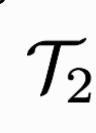
5-way, 1-shot image classification (Minilmagenet)

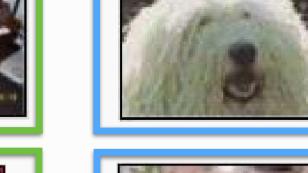
Given 1 example of 5 classes:

Classify new examples

held-out classes

meta-training





•

any ML problem

Can replace image classification with: regression, language generation, skill learning,

General recipe

How to design a meta-learning algorithm

- 1. Choose a form of $p(\phi_i | \mathcal{D}_i^{\mathrm{tr}}, \theta)$
- 2. Choose how to optimize $\, heta\,$ w.r.t. max-likelihood objective using $\,\mathcal{D}_{\mathrm{meta-train}}$

Can we treat $p(\phi_i | \mathcal{D}_i^{\mathrm{tr}}, \theta)$ as an **inference** problem?

Neural networks are good at inference.

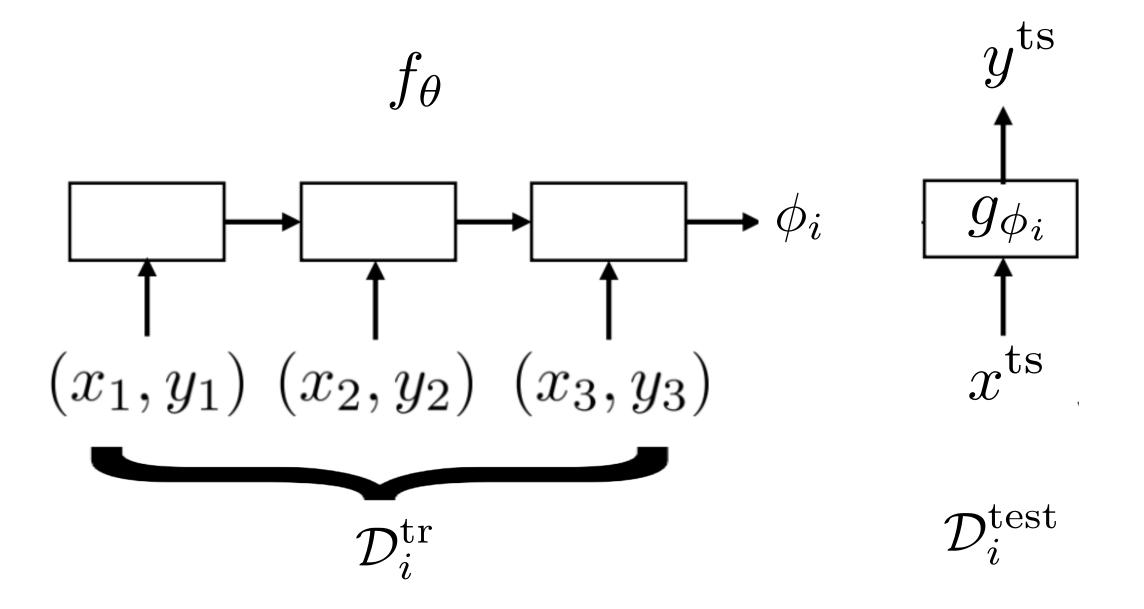
Outline

- Problem statement
- Meta-learning algorithms
 - Black-box adaptation
 - Optimization-based inference
 - Non-parametric methods
 - Bayesian meta-learning
- Meta-learning applications
 - 5 min break —
- Meta-reinforcement learning
- Challenges & frontiers

Key idea: Train a neural network to represent $p(\phi_i | \mathcal{D}_i^{\mathrm{tr}}, \theta)$

For now: Use **deterministic** (point estimate) $\phi_i = f_{\theta}(\mathcal{D}_i^{\mathrm{tr}})$

(Bayes will come back later)

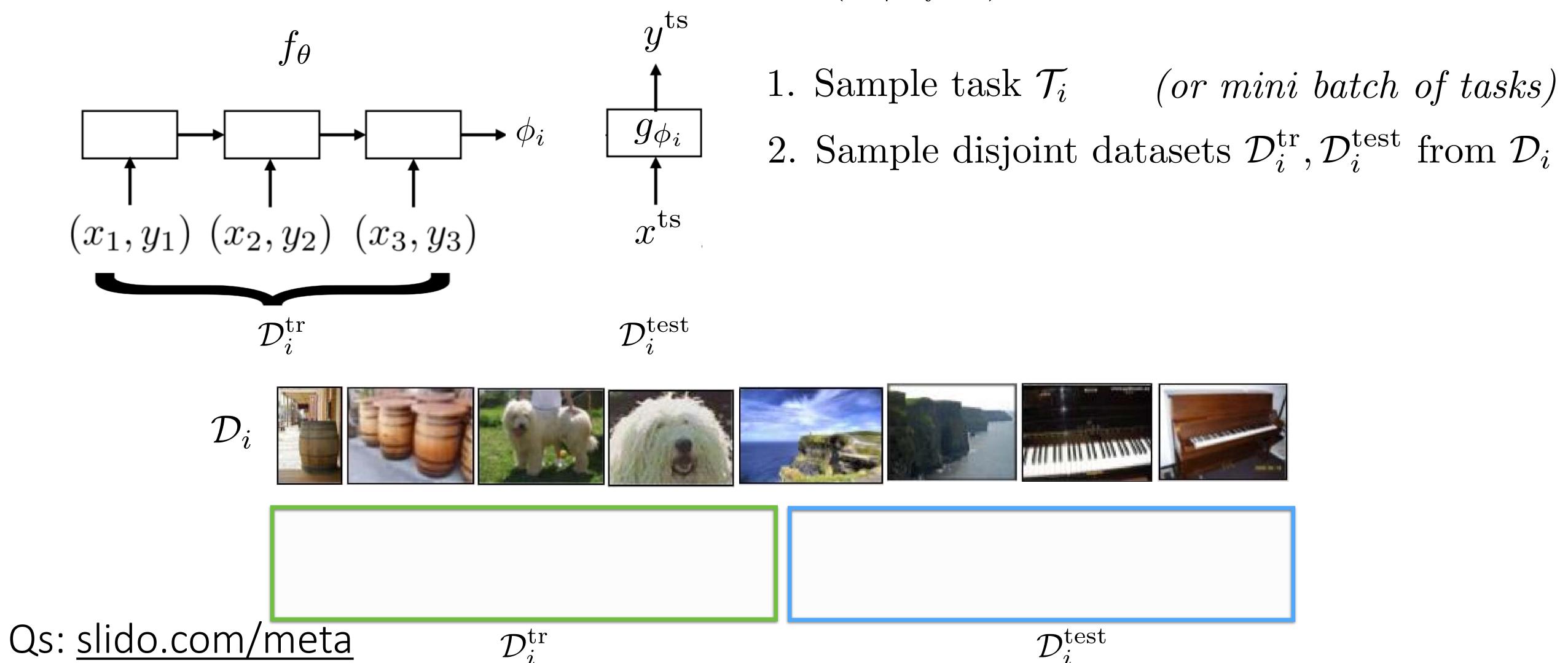


Train with standard supervised learning!

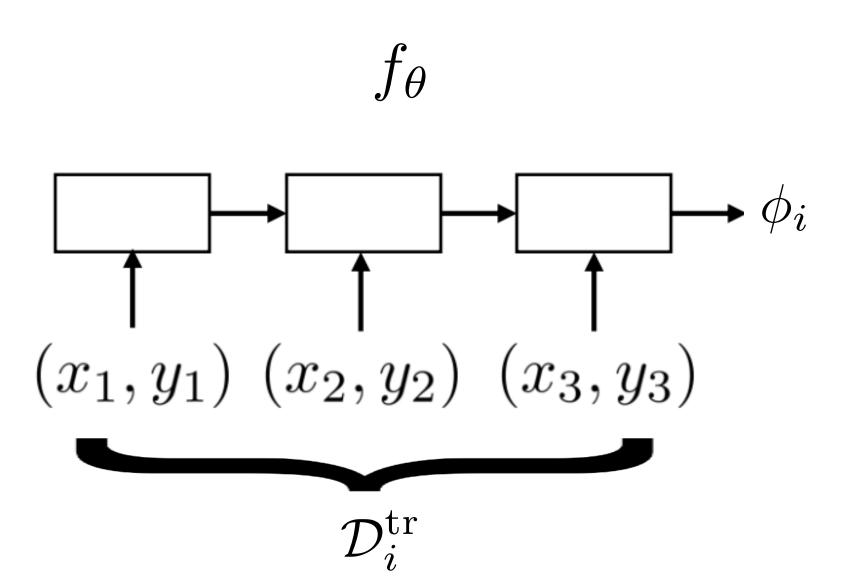
$$\max_{ heta} \sum_{\mathcal{T}_i} \sum_{(x,y) \sim \mathcal{D}_i^{ ext{test}}} \log g_{\phi_i}(y|x)$$
 $\mathcal{L}(\phi_i, \mathcal{D}_i^{ ext{test}})$

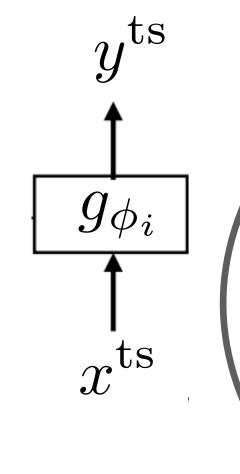
$$\max_{ heta} \sum_{\mathcal{T}_i} \mathcal{L}(f_{ heta}(\mathcal{D}_i^{ ext{tr}}), \mathcal{D}_i^{ ext{test}})$$

Key idea: Train a neural network to represent $p(\phi_i | \mathcal{D}_i^{\mathrm{tr}}, \theta)$



Key idea: Train a neural network to represent $p(\phi_i | \mathcal{D}_i^{\mathrm{tr}}, \theta)$





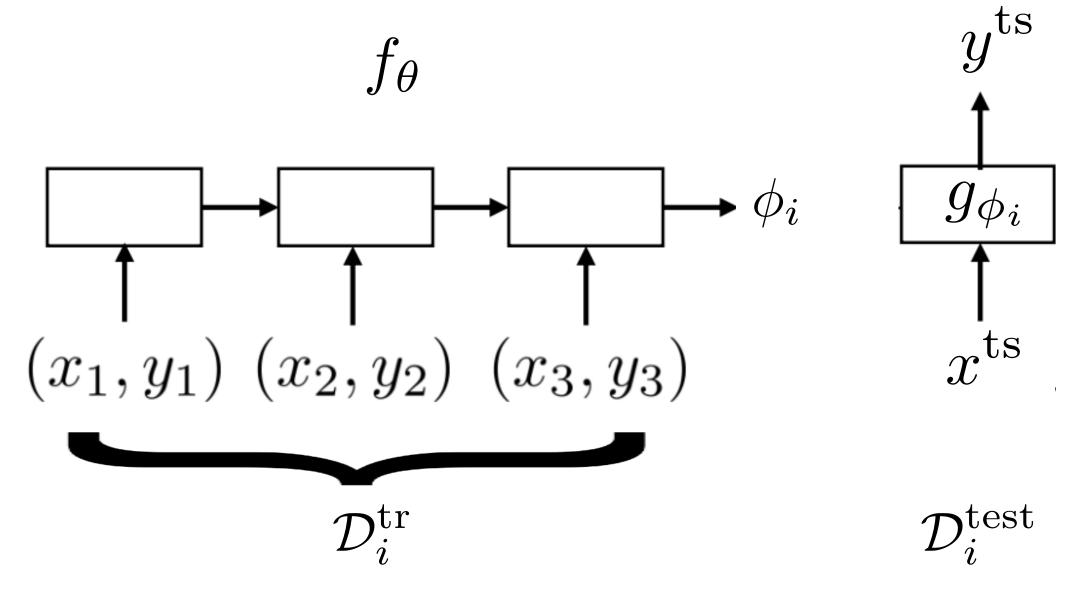
- 1. Sample task \mathcal{T}_i (or mini batch of tasks)

 2. Sample disjoint datasets $\mathcal{D}_i^{\mathrm{tr}}, \mathcal{D}_i^{\mathrm{test}}$ from \mathcal{D}_i
- 3. Compute $\phi_i \leftarrow f_{\theta}(\mathcal{D}_i^{\text{tr}})$ 4. Update θ using $\nabla_{\theta} \mathcal{L}(\phi_i, \mathcal{D}_i^{\text{test}})$

Qs: slido.com/meta

 $\mathcal{D}_i^{ ext{tr}}$

Key idea: Train a neural network to represent $p(\phi_i | \mathcal{D}_i^{\mathrm{tr}}, \theta)$



Form of f_{θ} ?

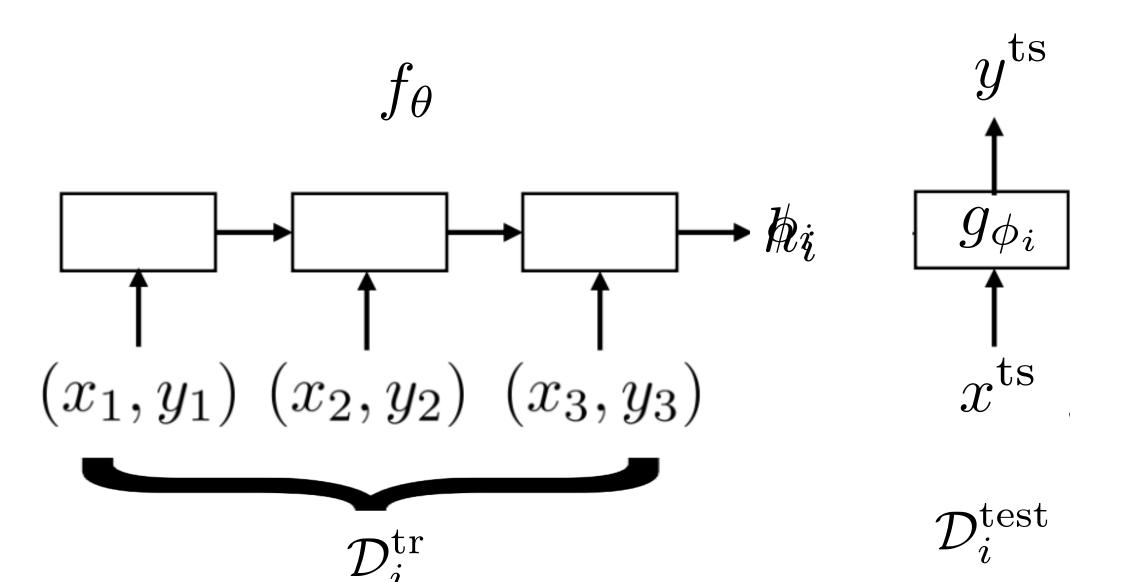
- LSTM
- Neural turing machine (NTM)
- Self-attention
- 1D convolutions
- feedforward + average

Key idea: Train a neural network to represent $p(\phi_i | \mathcal{D}_i^{\mathrm{tr}}, \theta)$

Challenges

Outputting all neural net parameters does not seem scalable?

Idea: Do not need to output all parameters of neural net, only sufficient statistics



(Santoro et al. MANN, Mishra et al. SNAIL)

low-dimensional vector \boldsymbol{h}_i represents contextual task information

$$\phi_i = \{h_i, \theta_g\}$$

general form: $y^{\mathrm{ts}} = f_{\theta}(\mathcal{D}_{i}^{\mathrm{tr}}, x^{\mathrm{ts}})$

Is there a way to infer all parameters in a scalable way?

Qs: slido.com/meta What if we treat it as an optimization procedure?

Outline

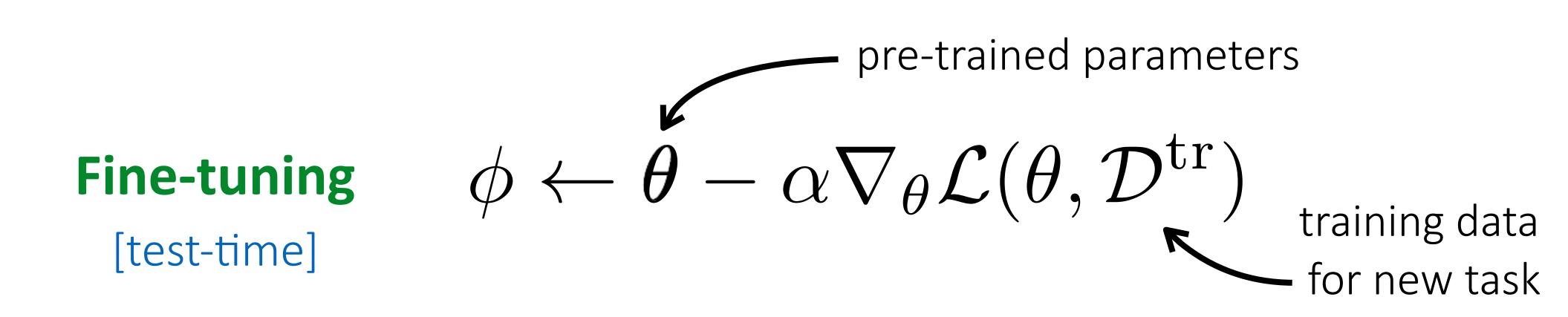
- Problem statement
- Meta-learning algorithms
 - Black-box adaptation
 - Optimization-based inference
 - Non-parametric methods
 - Bayesian meta-learning
- Meta-learning applications
 - 5 min break —
- Meta-reinforcement learning
- Challenges & frontiers

Key idea: Acquire ϕ_i through optimization.

$$\max_{\phi_i} \log p(\mathcal{D}_i^{\mathrm{tr}} | \phi_i) + \log p(\phi_i | \theta)$$

Meta-parameters θ serve as a prior. What form of prior?

One successful form of prior knowledge: initialization for fine-tuning



Meta-learning

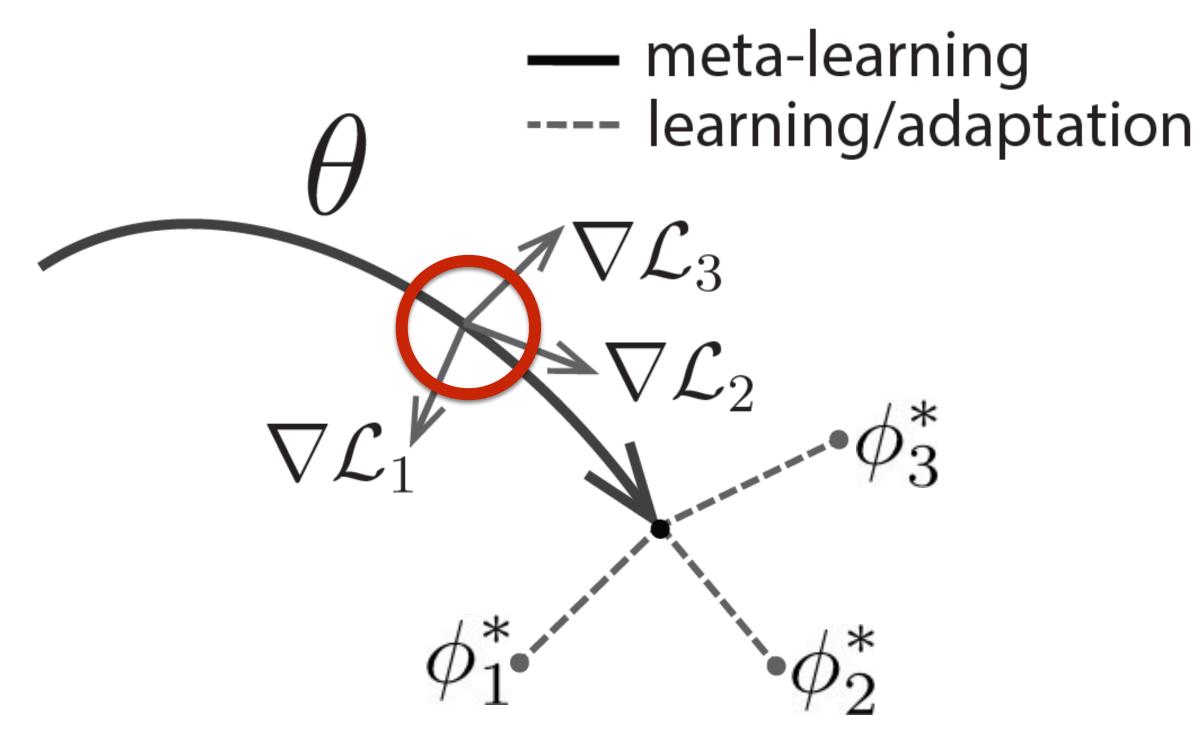
$$\min_{\theta} \sum_{\text{task } i} \mathcal{L}(\theta - \alpha \nabla_{\theta} \mathcal{L}(\theta, \mathcal{D}_{i}^{\text{tr}}), \mathcal{D}_{i}^{\text{ts}})$$

Key idea: Over many tasks, learn parameter vector θ that transfers via fine-tuning

$$\min_{\theta} \sum_{\text{task } i} \mathcal{L}(\theta - \alpha \nabla_{\theta} \mathcal{L}(\theta, \mathcal{D}_{i}^{\text{tr}}), \mathcal{D}_{i}^{\text{ts}})$$

 θ parameter vector being meta-learned

 ϕ_i^* optimal parameter vector for task i



Qs: slido.com/meta

Model-Agnostic Meta-Learning

Key idea: Acquire ϕ_i through optimization.

General Algorithm:

Amortized approach Optimization-based approach

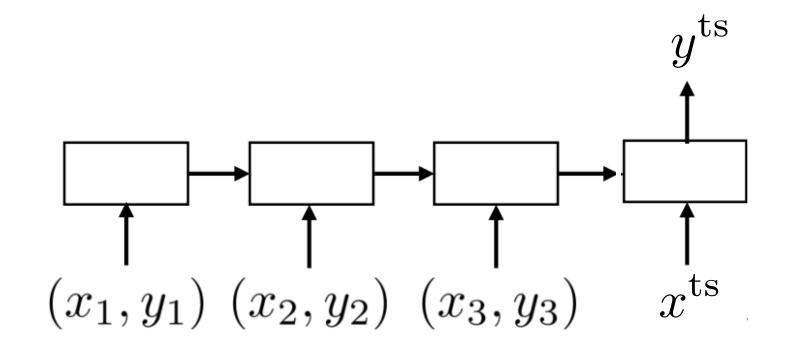
- Sample task \(\mathcal{T}_i \) (or mini batch of tasks)
 Sample disjoint datasets \(\mathcal{D}_i^{\text{tr}}, \mathcal{D}_i^{\text{test}} \) from \(\mathcal{D}_i \)
- 3. Compute $\phi_i \leftarrow f_{\theta}(\mathcal{D}_i^{\text{tr}})$ Optimize $\phi_i \leftarrow \theta \alpha \nabla_{\theta} \mathcal{L}(\theta, \mathcal{D}_i^{\text{tr}})$ 4. Update θ using $\nabla_{\theta} \mathcal{L}(\phi_i, \mathcal{D}_i^{\text{test}})$

—> brings up **second-order** derivatives (more on this later)

Optimization vs. Black-Box Adaptation

Black-box adaptation

general form: $y^{\mathrm{ts}} = f_{\theta}(\mathcal{D}_{i}^{\mathrm{tr}}, x^{\mathrm{ts}})$



Model-agnostic meta-learning

$$y^{\text{ts}} = f_{\text{MAML}}(\mathcal{D}_i^{\text{tr}}, x^{\text{ts}})$$

= $f_{\phi_i}(x^{\text{ts}})$
where $\phi_i = \theta - \alpha \nabla_{\theta} \mathcal{L}(\theta, \mathcal{D}_i^{\text{tr}})$

MAML can be viewed as computation graph, with embedded gradient operator

Note: Can mix & match components of computation graph

Learn initialization but replace gradient update with learned network

where
$$\phi_i = \theta - \alpha \nabla_{\theta} \mathcal{L}(\theta, \mathcal{D}_i^{\text{tr}})$$

 $f(\theta, \mathcal{D}_i^{\text{tr}}, \nabla_{\theta} \mathcal{L})$

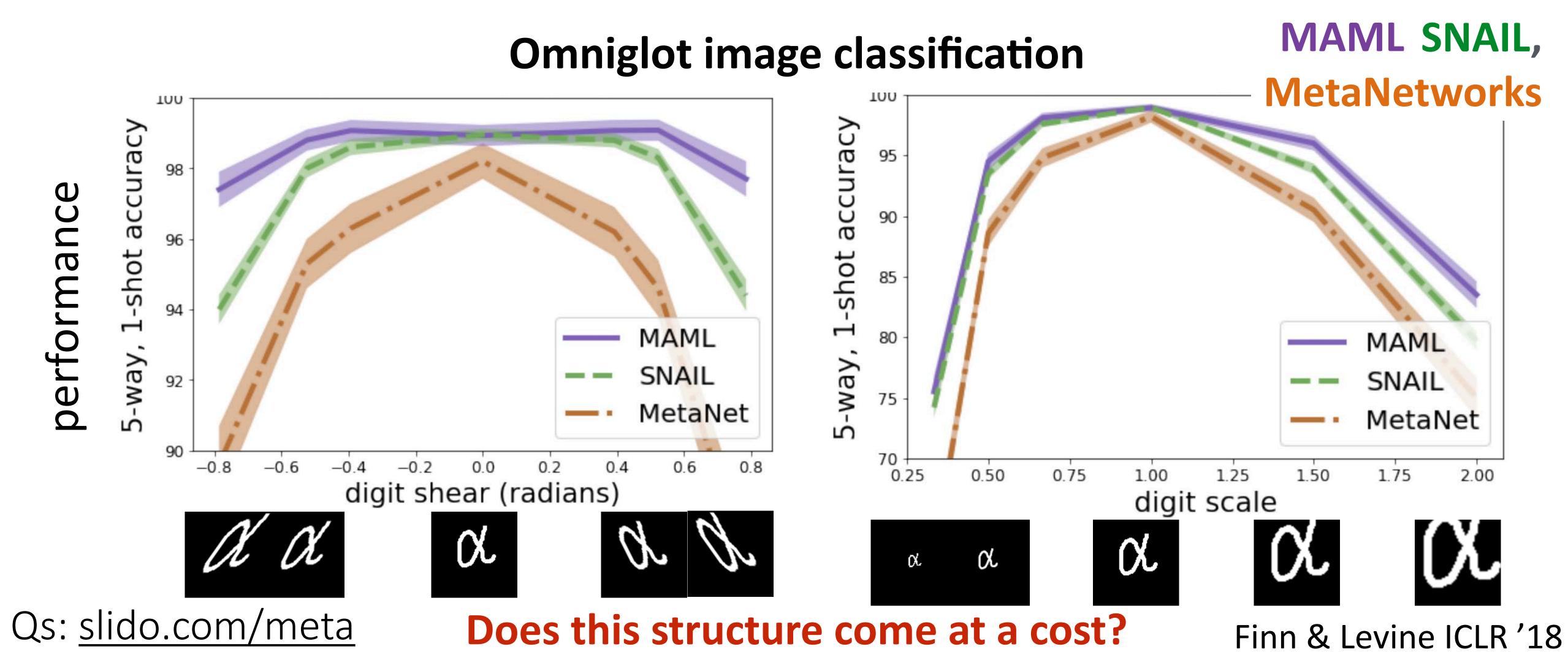
Ravi & Larochelle ICLR '17

(actually precedes MAML)

Qs: <u>slido.com</u>This **computation graph view** of meta-learning will come back again!

Optimization vs. Black-Box Adaptation

How well can learning procedures generalize to similar, but extrapolated tasks?



Black-box adaptation

Optimization-based (MAML)

$$y^{\mathrm{ts}} = f_{\theta}(\mathcal{D}_{i}^{\mathrm{tr}}, x^{\mathrm{ts}})$$

$$y^{\mathrm{ts}} = f_{\mathrm{MAML}}(\mathcal{D}_i^{\mathrm{tr}}, x^{\mathrm{ts}})$$

Does this structure come at a cost?

For a sufficiently deep f,

MAML function can approximate any function of $\mathcal{D}_i^{\mathrm{tr}}, x^{\mathrm{ts}}$

Finn & Levine, ICLR 2018

Assumptions:

- nonzero lpha
- loss function gradient does not lose information about the label
- datapoints in $\mathcal{D}_i^{\mathrm{tr}}$ are unique

Why is this interesting?

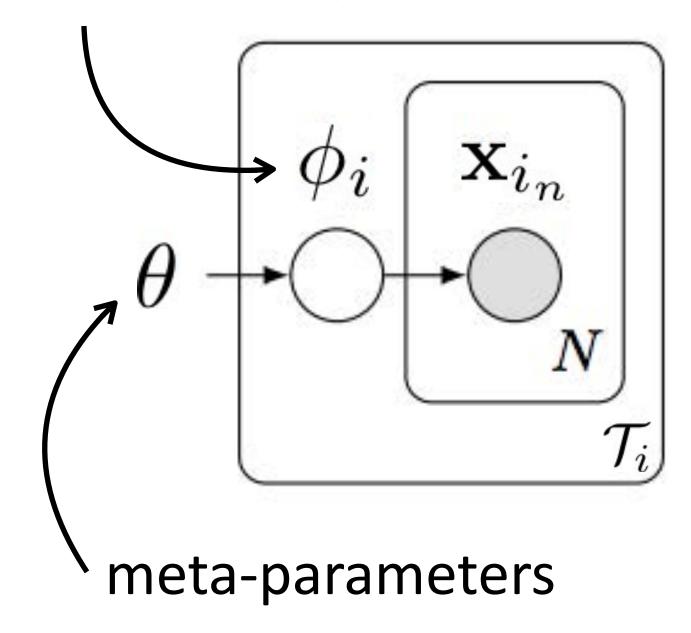
MAML has benefit of inductive bias without losing expressive power.

Probabilistic Interpretation of Optimization-Based Inference

Key idea: Acquire ϕ_i through optimization.

Meta-parameters θ serve as a prior. One form of prior knowledge: **initialization** for **fine-tuning**

task-specific parameters



$$\begin{split} \max_{\theta} \log \prod_{i} p(\mathcal{D}_{i}|\theta) \\ &= \log \prod_{i} \int p(\mathcal{D}_{i}|\phi_{i}) p(\phi_{i}|\theta) d\phi_{i} \quad \text{(empirical Bayes)} \\ &\approx \log \prod_{i} p(\mathcal{D}_{i}|\hat{\phi}_{i}) p(\hat{\phi}_{i}|\theta) \\ &\approx \operatorname{MAP estimate} \end{split}$$

How to compute MAP estimate?

Gradient descent with early stopping = MAP inference under

Gaussian prior with mean at initial parameters [Santos '96]

(exact in linear case, approximate in nonlinear case)

Qs: slido.com/meta MAML approximates hierarchical Bayesian inference. Grant et al. ICLR '18

Optimization-Based Inference

Key idea: Acquire ϕ_i through optimization.

Meta-parameters θ serve as a prior. One form of prior knowledge: **initialization** for **fine-tuning**

Gradient-descent + early stopping (MAML): implicit Gaussian prior $\phi \leftarrow \theta - \alpha \nabla_{\theta} \mathcal{L}(\theta, \mathcal{D}^{\mathrm{tr}})$

Other forms of priors?

Gradient-descent with explicit Gaussian prior $\phi \leftarrow \min_{\phi'} \mathcal{L}(\phi', \mathcal{D}^{\mathrm{tr}}) + \frac{\lambda}{2}||\theta - \phi'||^2$

Rajeswaran et al. implicit MAML '19

Bayesian linear regression on learned features Harrison et al. ALPaCA '18

Closed-form or convex optimization on learned features

ridge regression, logistic regression

Support vector machine

Bertinetto et al. R2-D2 '19 Lee et al. MetaOptNet '19

Qs: slido.com/meta Current SOTA on few-shot image classification

Optimization-Based Inference

Key idea: Acquire ϕ_i through optimization.

Challenges

How to choose architecture that is effective for inner gradient-step?

Idea: Progressive neural architecture search + MAML (Kim et al. Auto-Meta)

- finds highly non-standard architecture (deep & narrow)
- different from architectures that work well for standard supervised learning

Minilmagenet, 5-way 5-shot MAML, basic architecture: 63.11%

MAML + AutoMeta: **74.65%**

Optimization-Based Inference

Key idea: Acquire ϕ_i through optimization.

Challenges

Second-order meta-optimization can exhibit instabilities.

Idea: [Crudely] approximate $\frac{d\phi_i}{d\theta}$ as identity (Finn et al. first-order MAML, Nichol et al. Reptile)

Idea: Automatically learn inner vector learning rate, tune outer learning rate

(Li et al. Meta-SGD, Behl et al. AlphaMAML)

Idea: Optimize only a subset of the parameters in the inner loop

(Zhou et al. DEML, Zintgraf et al. CAVIA)

Idea: Decouple inner learning rate, BN statistics per-step (Antoniou et al. MAML++)

Idea: Introduce context variables for increased expressive power.

(Finn et al. bias transformation, Zintgraf et al. CAVIA)

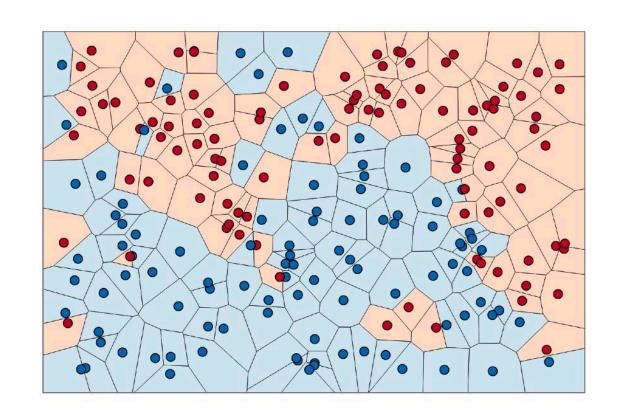
Qs: slido.c Takeaway: a range of simple tricks that can help optimization significantly

Outline

- Problem statement
- Meta-learning algorithms
 - Black-box adaptation
 - Optimization-based inference
 - Non-parametric methods
 - Bayesian meta-learning
- Meta-learning applications
 - 5 min break —
- Meta-reinforcement learning
- Challenges & frontiers

So far: Learning parametric models.

In low data regimes, non-parametric methods are simple, work well.



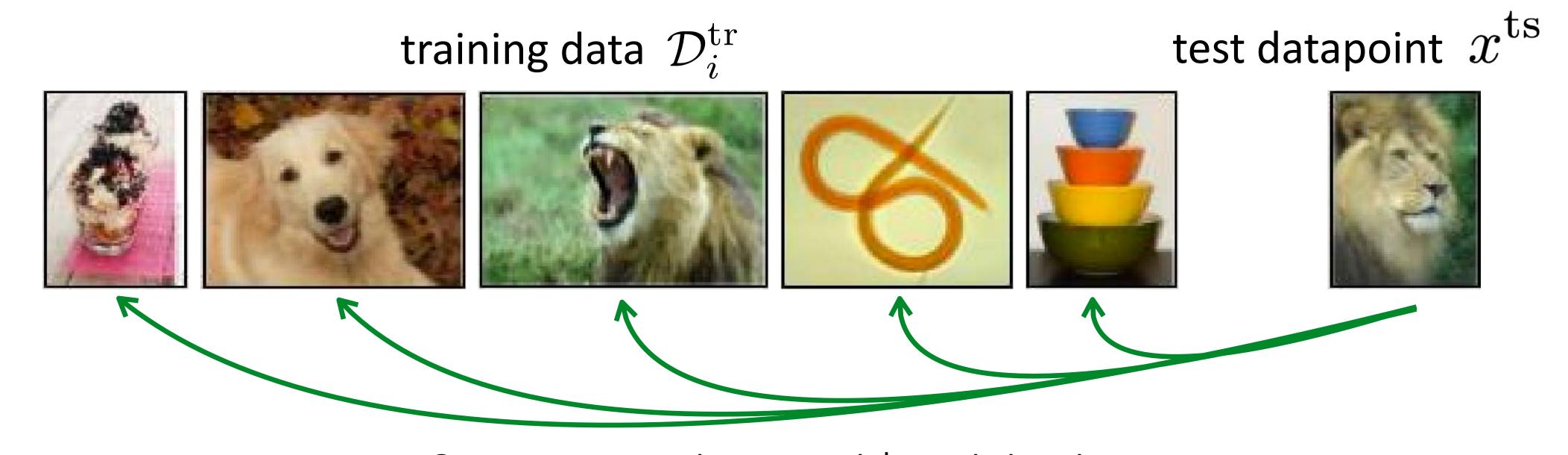
During meta-test time: few-shot learning <-> low data regime

During meta-training: still want to be parametric

Can we use parametric meta-learners that produce effective non-parametric learners?

Note: some of these methods precede parametric approaches

Key Idea: Use non-parametric learner.



Compare test image with training images

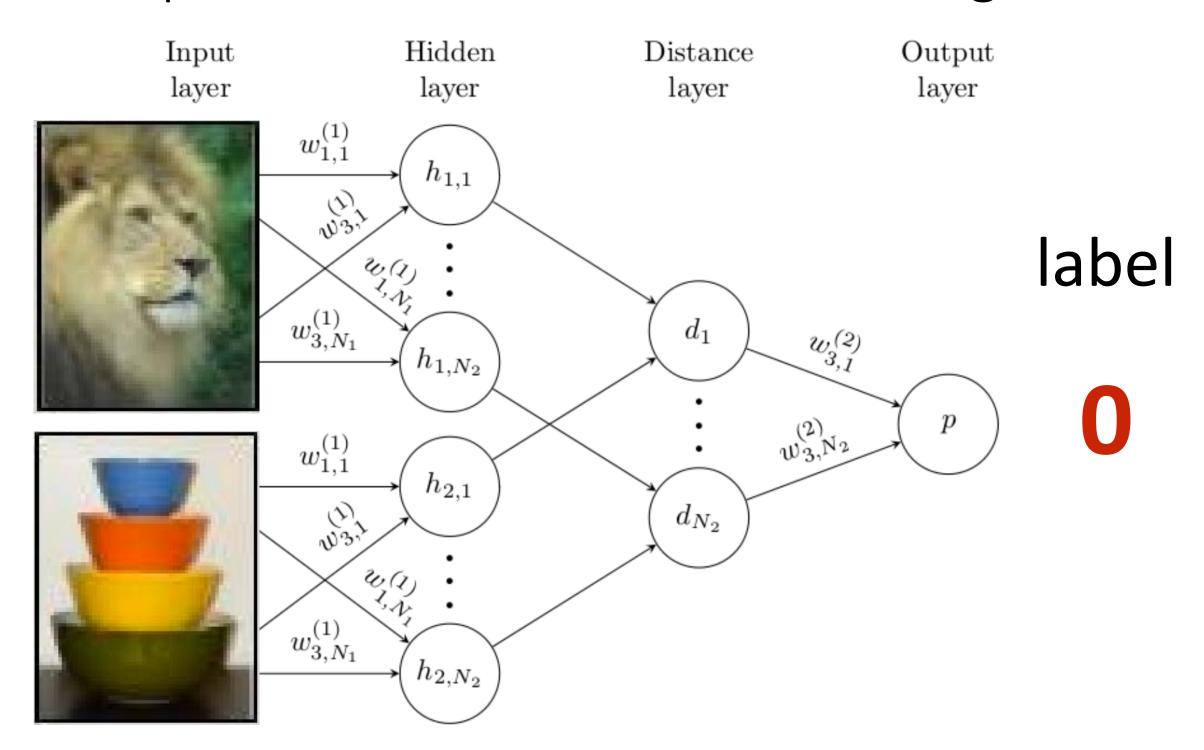
In what space do you compare? With what distance metric?

pixel space, l2 distance?

Learn to compare using data!

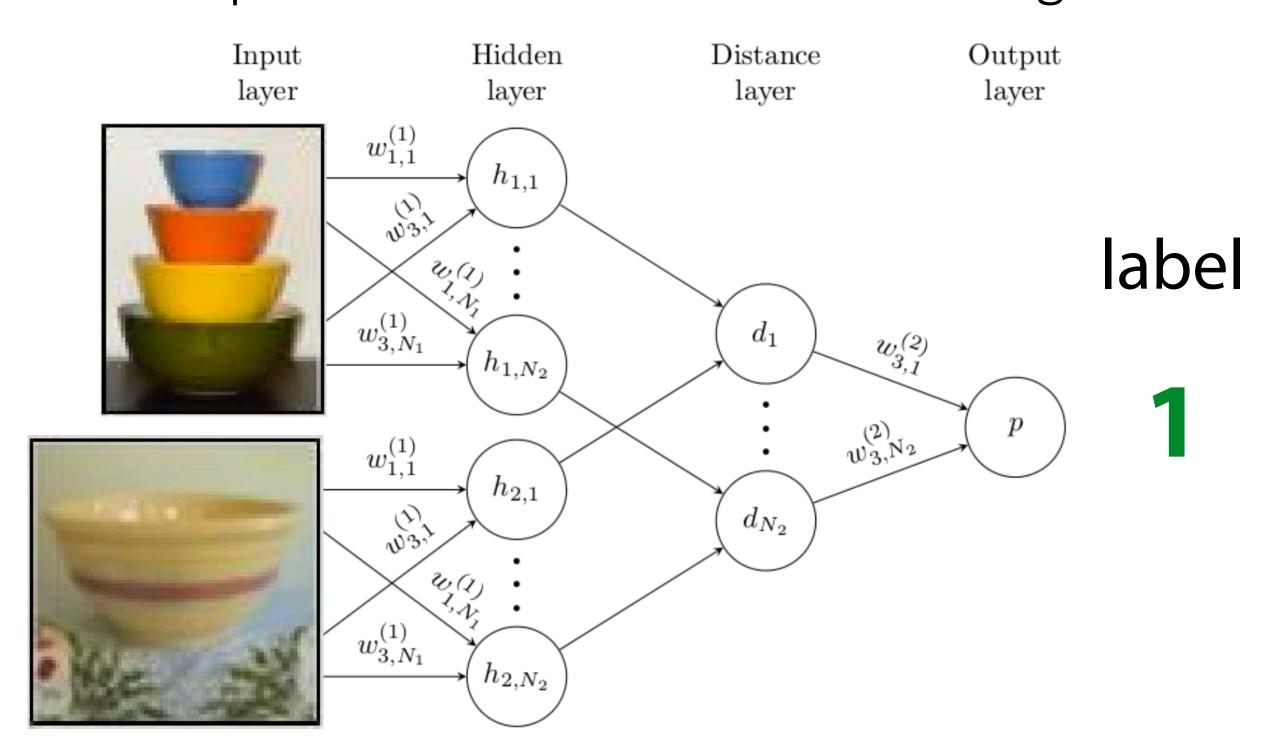
Key Idea: Use non-parametric learner.

train Siamese network to predict whether or not two images are the same class



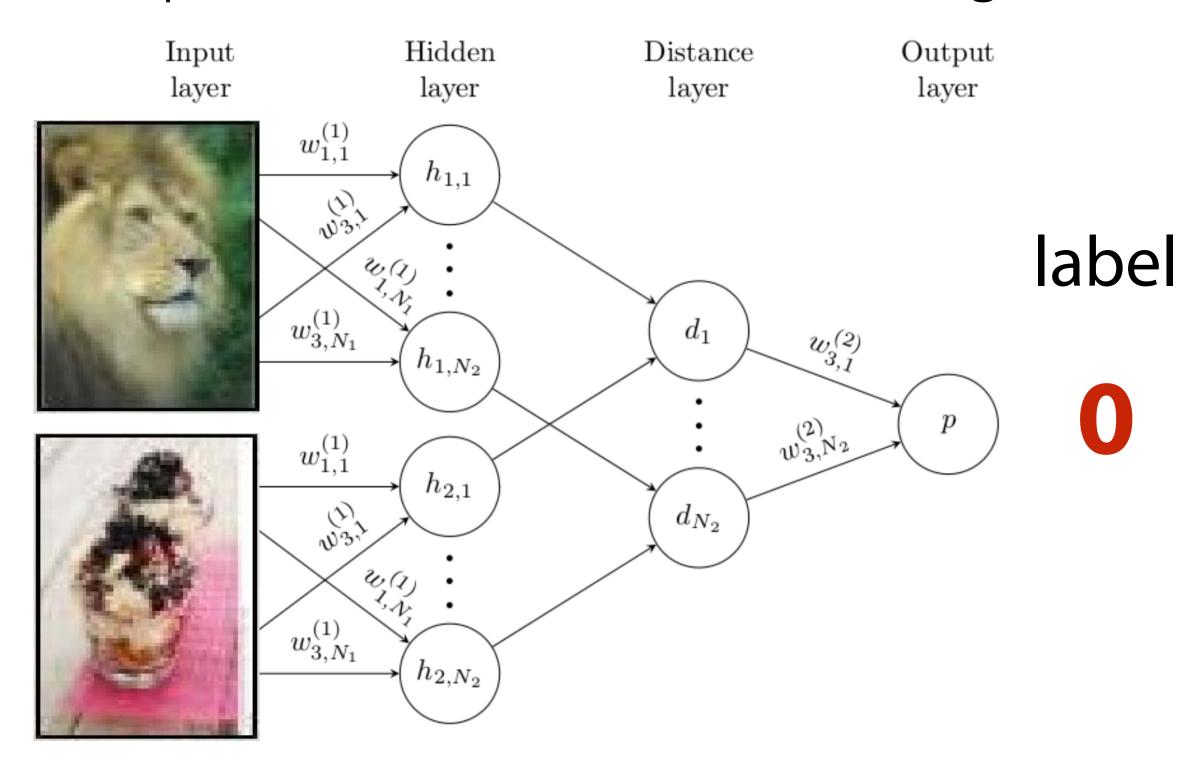
Key Idea: Use non-parametric learner.

train Siamese network to predict whether or not two images are the same class



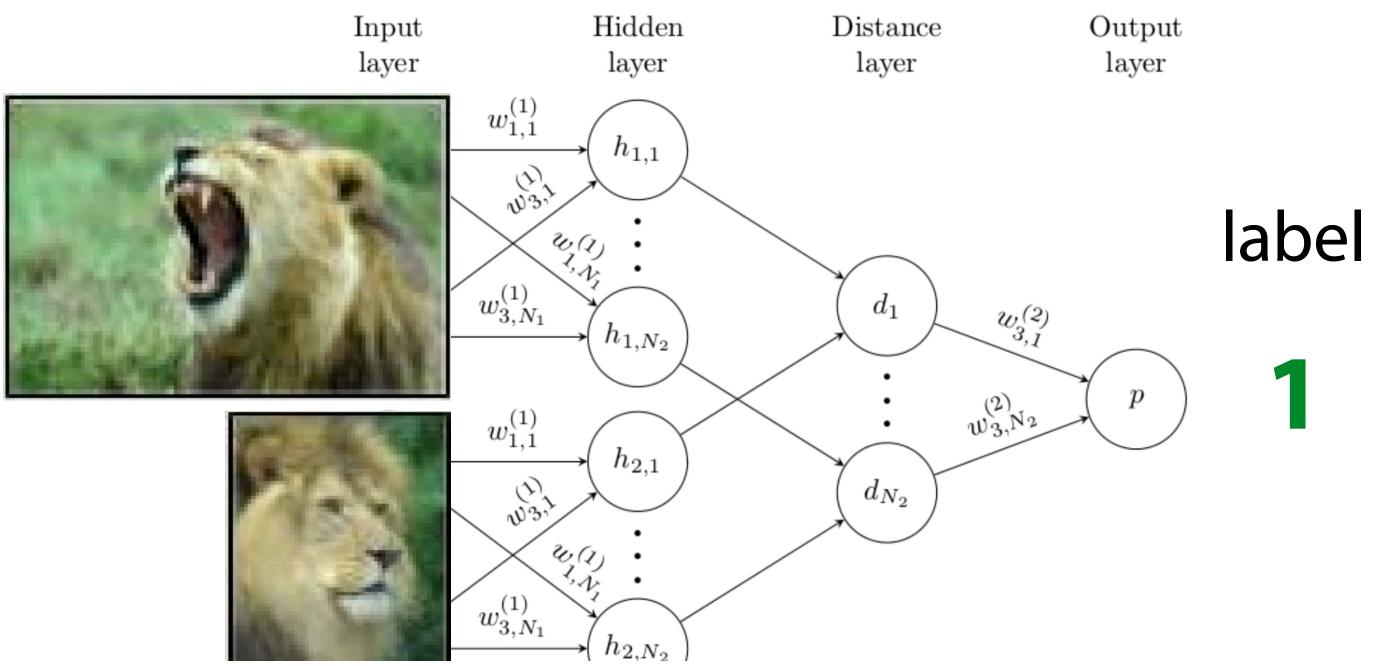
Key Idea: Use non-parametric learner.

train Siamese network to predict whether or not two images are the same class



Key Idea: Use non-parametric learner.

train Siamese network to predict whether or not two images are the same class



Meta-test time: compare image $\mathbf{x}_{ ext{test}}$ to each image in $\mathcal{D}_{i}^{ ext{tr}}$

Meta-training: 2-way classification

Can we **match** meta-train & meta-test?

Qs: slido.co.meta-test: N-way classification

Key Idea: Use non-parametric learner.

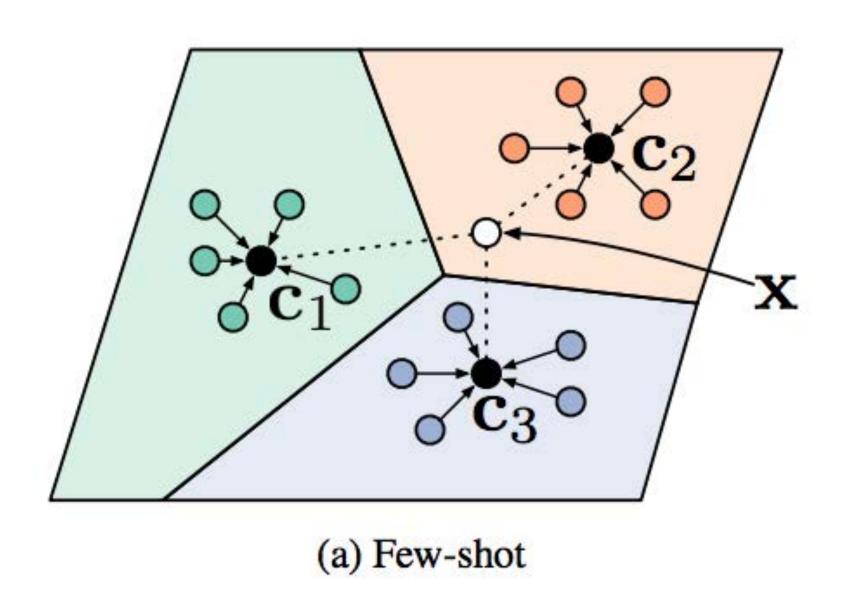
Qs: slido.com/meta

Can we make meta-train & meta-test match? Weighed nearest neighbors in bidirectional LSTM learned embedding space $g_{ heta}$ What if >1 shot? convolutional encoder Can we aggregate class information to create a prototypical embedding?

 $\mathcal{D}_i^{ ext{ts}}$

Vinyals et al. Matching Networks, NeurIPS '16

Key Idea: Use non-parametric learner.



$$\mathbf{c}_k = \frac{1}{|\mathcal{D}_i^{\mathrm{tr}}|} \sum_{(x,y) \in \mathcal{D}_i^{\mathrm{tr}}} f_{\theta}(x)$$

$$p_{\theta}(y=k|x) = \frac{\exp(-d(f_{\theta}(x), \mathbf{c}_k))}{\sum_{k'} \exp(-d(f_{\theta}(x), \mathbf{c}_{k'}))}$$

d: Euclidean, or cosine distance

So far: Siamese networks, matching networks, prototypical networks Embed, then nearest neighbors.

Challenge

What if you need to reason about more complex relationships between datapoints?

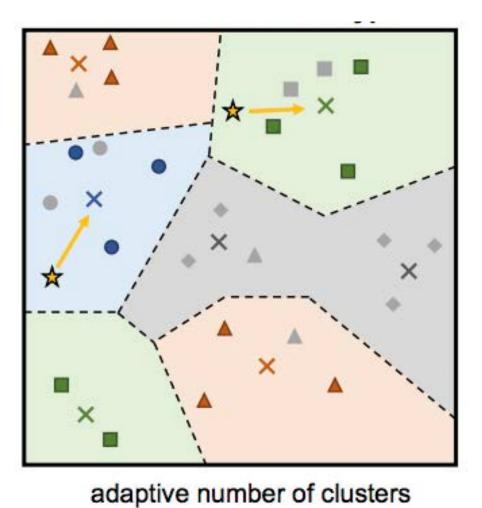
Idea: Learn non-linear relation module on embeddings

relation module

Feature maps concatenation f_{φ} Relation score g_{ϕ} (learn d in PN)

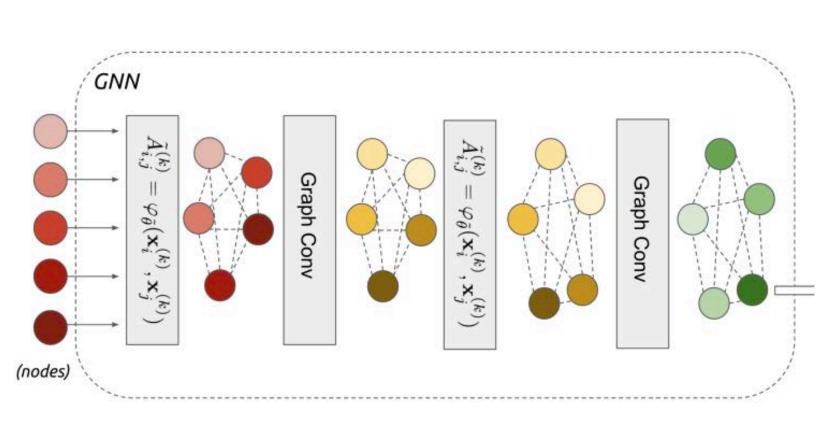
Qs: slicSung et al. Relation Net

Idea: Learn infinite mixture of prototypes.



Allen et al. IMP, ICML '19

Idea: Perform message passing on embeddings



Garcia & Bruna, GNN

Amortized vs. Optimization vs. Non-Parametric

Computation graph perspective

Black-box amortized

$$y^{\text{ts}} = f_{\theta}(\mathcal{D}_{i}^{\text{tr}}, x^{\text{ts}})$$

$$y^{\text{ts}}$$

$$(x_{1}, y_{1}) (x_{2}, y_{2}) (x_{3}, y_{3}) x^{\text{ts}}$$

Optimization-based

$$y^{ ext{ts}} = f_{ heta}(\mathcal{D}_{i}^{ ext{tr}}, x^{ ext{ts}})$$
 $y^{ ext{ts}} = f_{ ext{MAML}}(\mathcal{D}_{i}^{ ext{tr}}, x^{ ext{ts}})$ $y^{ ext{ts}} = f_{\phi_{i}}(x^{ ext{ts}})$ where $\phi_{i} = \theta - \alpha \nabla_{\theta} \mathcal{L}(\theta, \mathcal{D}_{i}^{ ext{tr}})$

Non-parametric

$$y^{\text{ts}} = f_{\text{PN}}(\mathcal{D}_i^{\text{tr}}, x^{\text{ts}})$$

$$= \operatorname{softmax} \left(-d(f_{\theta}(x), c_k) \right)$$

$$\text{where } c_k = \frac{1}{|\mathcal{D}_i^{\text{tr}}|} \sum_{(x,y) \in \mathcal{D}_i^{\text{tr}}} f_{\theta}(x)$$

Note: (again) Can mix & match components of computation graph

Gradient descent on

relation net embedding.

Both condition on data & run gradient descent.

Jiang et al. CAML '19

Rusu et al. LEO '19

MAML, but initialize last layer as ProtoNet during meta-training

Triantafillou et al. Proto-MAML '19

Intermediate Takeaways

Black-box amortized

- + easy to combine with variety of learning problems (e.g. SL, RL)
- challenging optimization (no inductive bias at the initialization)
- often data-inefficient
- model & architecture intertwined

Optimization-based

- + handles varying & large K well
- + structure lends well to out-ofdistribution tasks
- second-order optimization

Non-parametric

- + simple
- + entirely **feedforward**
- + computationally fast & easy to optimize
- harder to generalize to varying K
- hard to scale to very large K
- so far, limited to classification

Generally, well-tuned versions of each perform comparably on existing few-shot benchmarks!

Outline

- Problem statement
- Meta-learning algorithms
 - Black-box adaptation
 - Optimization-based inference
 - Non-parametric methods
 - Bayesian meta-learning
- Meta-learning applications
 - 5 min break —
- Meta-reinforcement learning
- Challenges & frontiers

I can't believe it's not Bayesian

Recall parametric approaches: Use deterministic $p(\phi_i | \mathcal{D}_i^{\text{tr}}, \theta)$ (i.e. a point estimate)

✓ Smiling,

✓ Wearing Hat,

ta

Why/when is this a problem?

Few-shot learning problems may be *ambiguous*. (even with prior)

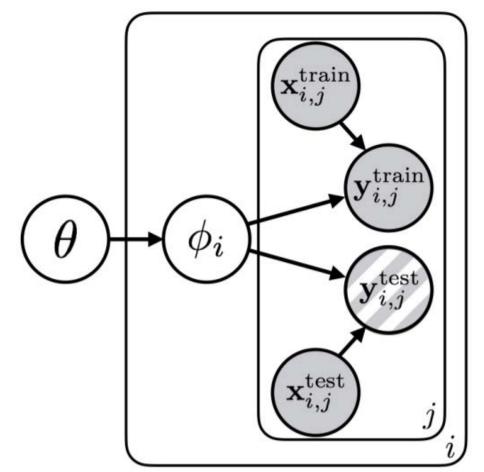
Can we learn to *generate hypotheses* about the underlying function? i.e. sample from $p(\phi_i|\mathcal{D}_i^{\mathrm{tr}},\theta)$

Important for:

- safety-critical few-shot learning (e.g. medical imaging)
- learning to actively learn
- learning to explore in meta-RL

Active learning w/ meta-learning: Woodward & Finn '16, Konyushkova et al. '17, Bachman et al. '17

Meta-learning with ambiguity



$$\theta \sim p(\theta)$$

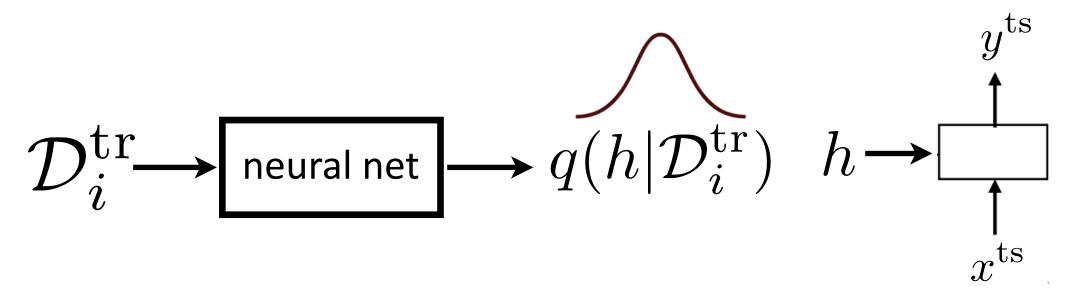
$$\log p(y_i^{\text{train}} | x_i^{\text{train}}, \phi_i)$$

$$\log p(y_i^{\text{test}} | x_i^{\text{test}}, \phi_i)$$

Goal: sample $\phi_i \sim p(\phi_i|x_i^{\text{train}}, y_i^{\text{train}}, x_i^{\text{test}})$

Black-Box Amortized Inference

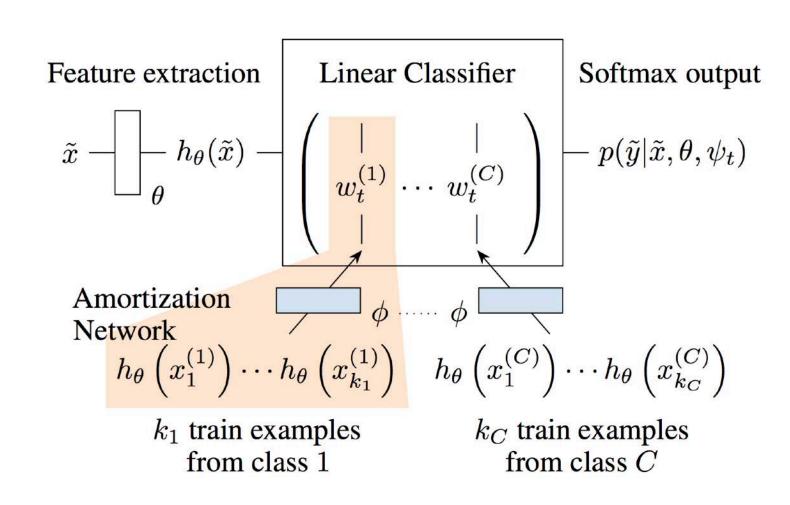
Amortized Variational Inference



Simple idea: NN produces Gaussian distribution over h_i . Train with amortized variational inference.

(Kingma & Welling VAE '13)

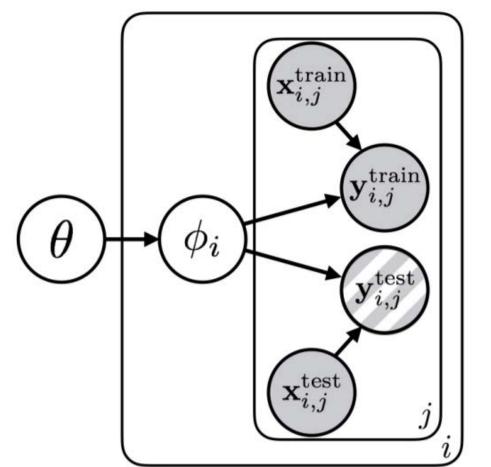
Output distribution over weights of last layer



Gordon et al. VERSA '19

Qs: slido.com/me What about Bayesian optimization-based meta-learning?

Meta-learning with ambiguity



$$\theta \sim p(\theta)$$

$$\log p(y_i^{\text{train}} | x_i^{\text{train}}, \phi_i)$$

$$\log p(y_i^{\text{test}} | x_i^{\text{test}}, \phi_i)$$

Goal: sample $\phi_i \sim p(\phi_i|x_i^{\text{train}}, y_i^{\text{train}}, x_i^{\text{test}})$

What about Bayesian optimization-based meta-learning?

Model $p(\phi_i|\theta)$ as Gaussian Same amortized variational inference for training. (Ravi & Beatson '19) Amortized Bayesian Meta-Learning Stein Variational Gradient (BMAML)

Gradient-based inference on last layer only.
Use SVGD to avoid Gaussian modeling assumption.

Ensemble of MAMLs (EMAML)

(Kim et al. Bayesian MAML '18)

Can we model non-Gaussian posterior over all parameters?

Sampling parameter vectors

$$\theta \sim p(\theta) = \mathcal{N}(\mu_{\theta}, \Sigma_{\theta})$$
 $\log p(y_i^{\text{train}} | x_i^{\text{train}}, \phi_i)$

$$\phi_i \sim p(\phi_i | \theta)$$
 $\log p(y_i^{\text{test}} | x_i^{\text{test}}, \phi_i)$

Goal: sample $\phi_i \sim p(\phi_i|x_i^{\text{train}}, y_i^{\text{train}})$

$$p(\phi_i|x_i^{\text{train}}, y_i^{\text{train}}) \propto \int p(\theta)p(\phi_i|\theta)p(y_i^{\text{train}}|x_i^{\text{train}}, \phi_i)d\theta$$

 \Rightarrow this is completely intractable!

what if we knew $p(\phi_i|\theta, x_i^{\text{train}}, y_i^{\text{train}})$?

⇒ now sampling is easy! just use ancestral sampling!

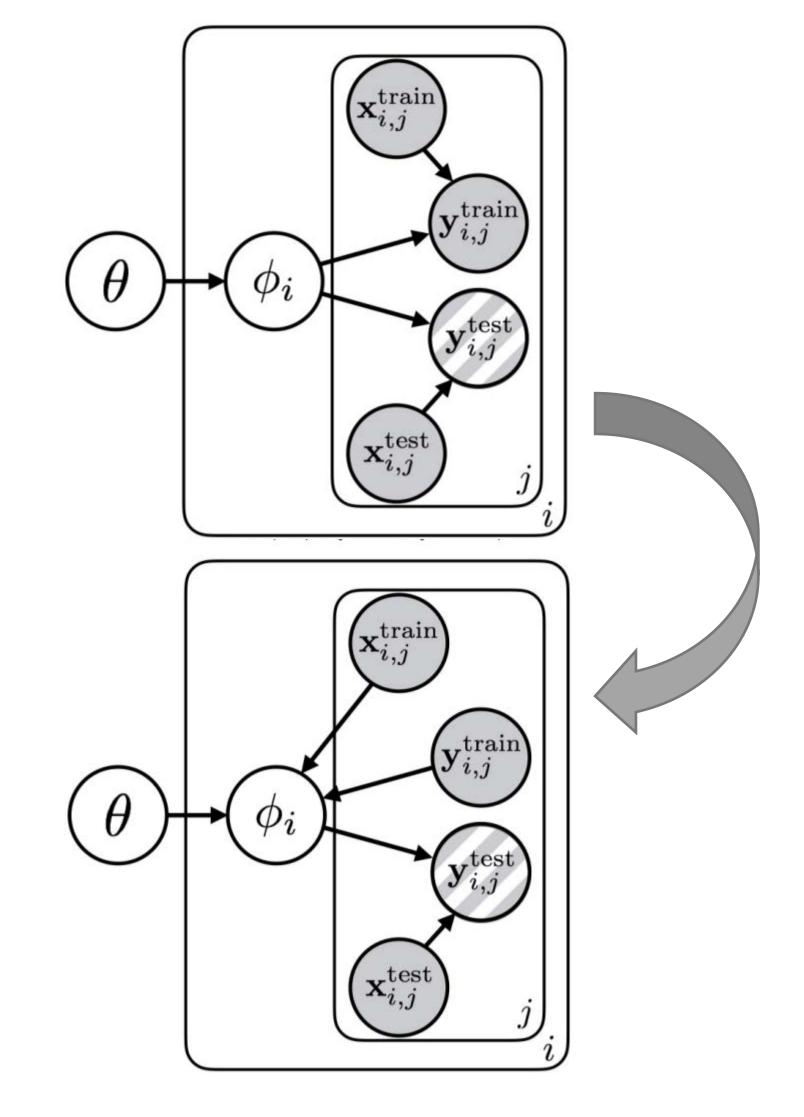
key idea: $p(\phi_i|\theta, x_i^{\text{train}}, y_i^{\text{train}}) \approx \delta(\hat{\phi}_i)$

this is **extremely** crude

but **extremely** convenient!

 $\hat{\phi}_i \approx \theta + \alpha \nabla_{\theta} \log p(y_i^{\text{train}} | x_i^{\text{train}}, \theta)$

(Santos '92, Grant et al. ICLR '18)



Training is harder. We use amortized variational inference.

Qs: slido.com/meta

Finn*, Xu* et al. Probabilistic MAML '18

PLATIPUS

Probabilistic LATent model for Incorporating Priors and Uncertainty in few-Shot learning

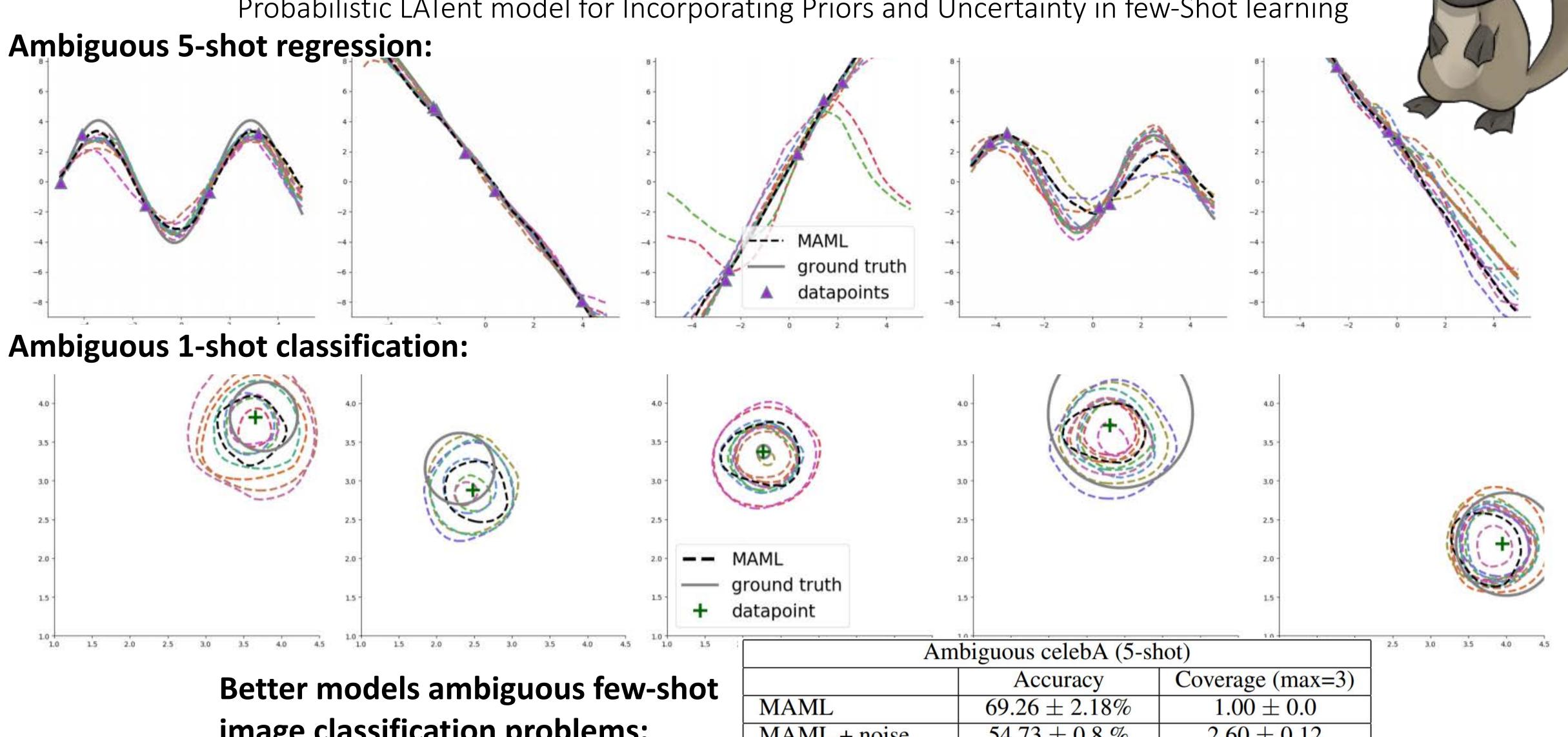


image classification problems:

Qs: slido.com/meta

MAML + noise $54.73 \pm 0.8 \%$ 2.60 ± 0.12 $\overline{\mathbf{2.62} \pm 0.11}$ **PLATIPUS** (ours) $\mathbf{69.97} \pm \mathbf{1.32}~\%$

Finn*, Xu* et al. Probabilistic MAML '18

Deep Bayesian Meta-Learning: Further Reading

Edwards & Storkey, Towards a Neural Statistician. 2017

Black-box approaches:

Gordon et al., VERSA 2019
Garnelo et al. Conditional Neural Processes 2018

Optimization-based approaches:

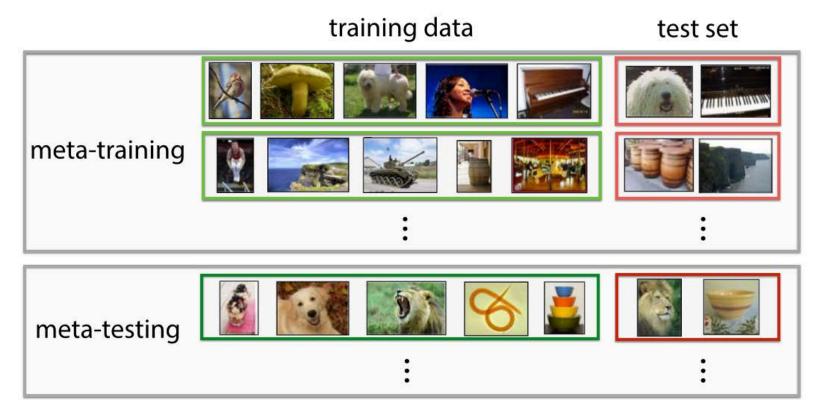
Kim et al., Bayesian MAML. 2018 Xu et al., Probabilistic MAML. 2018 Ravi & Beatson., Amortized Bayesian Meta-Learning 2019

Outline

- Problem statement
- Meta-learning algorithms
 - Black-box adaptation
 - Optimization-based inference
 - Non-parametric methods
 - Bayesian meta-learning
- Meta-learning applications
 - 5 min break —
- Meta-reinforcement learning
- Challenges & frontiers

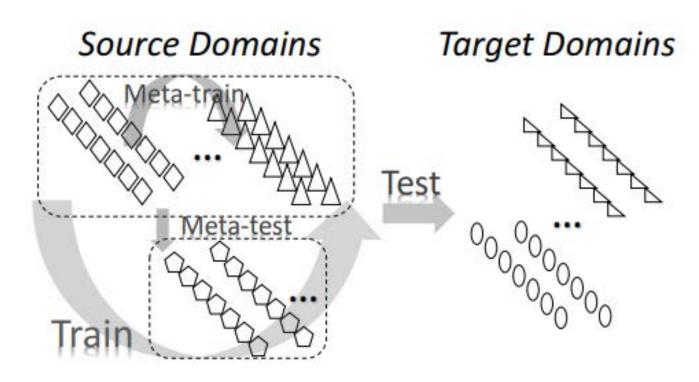
Applications in computer vision

few-shot image recognition



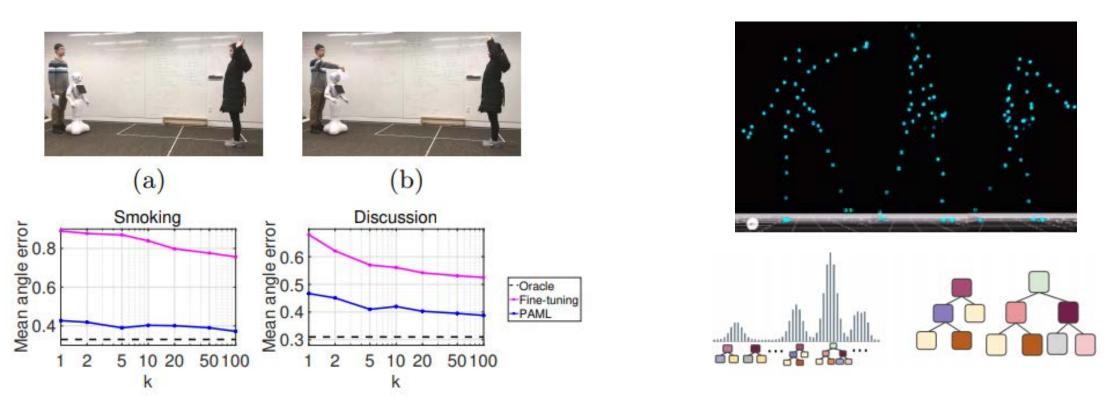
see, e.g.: Vinyals et al. **Matching Networks for One Shot Learning**, and many many others

domain adaptation



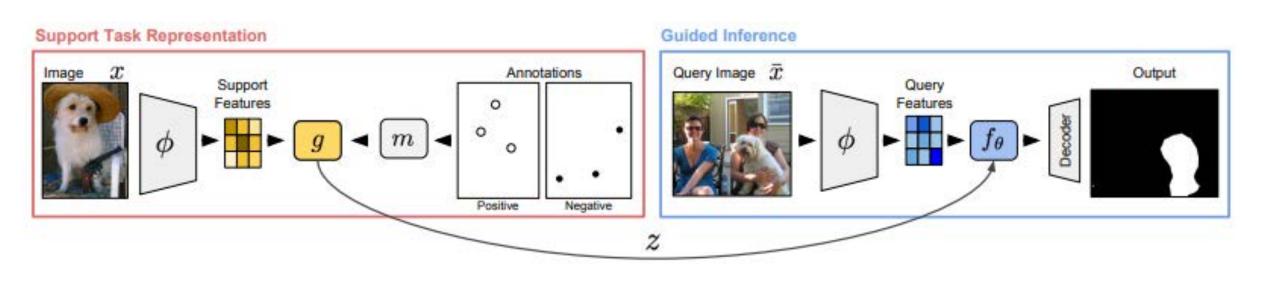
see, e.g.: Li, Yang, Song, Hospedales. Learning to Generalize: Meta-Learning for Domain Adaptation.

human motion and pose prediction



see, e.g.: Gui et al. Few-Shot Human Motion Prediction via Meta-Learning. Alet et al. Modular Meta-Learning.

few-shot segmentation



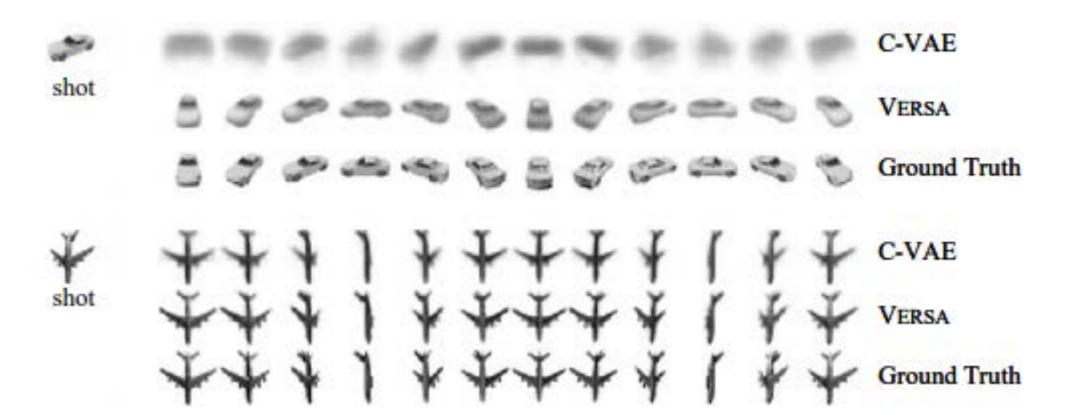
see, e.g.: Shaban, Bansal, Liu, Essa, Boots. **One-Shot Learning for Semantic Segmentation.**Rakelly, Shelhamer, Darrell, Efros, Levine. **Few-Shot Segmentation Propagation with Guided Networks.**Dong, Xing. **Few-Shot Semantic Segmentation with Prototype Learning.**

Applications in image & video generation

few-shot image generation

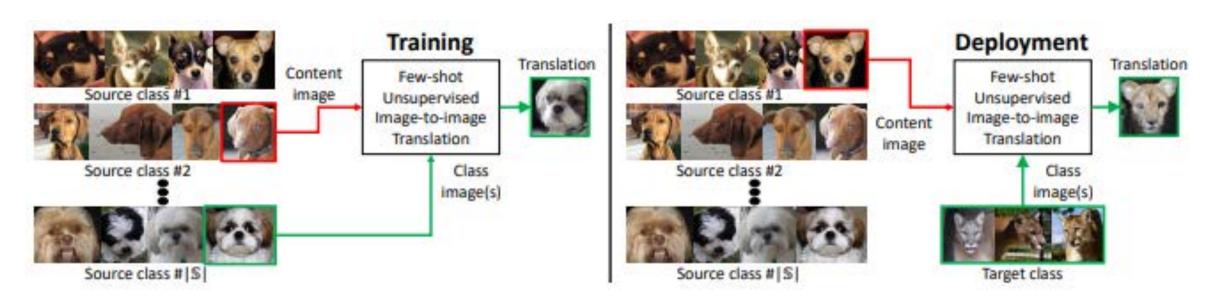
see, e.g.: Reed, Chen, Paine, van den Oord, Eslami, Rezende, Vinyals, de Freitas. **Few-Shot Autoregressive Density Estimation**. and many many others.

generation of novel viewpoints



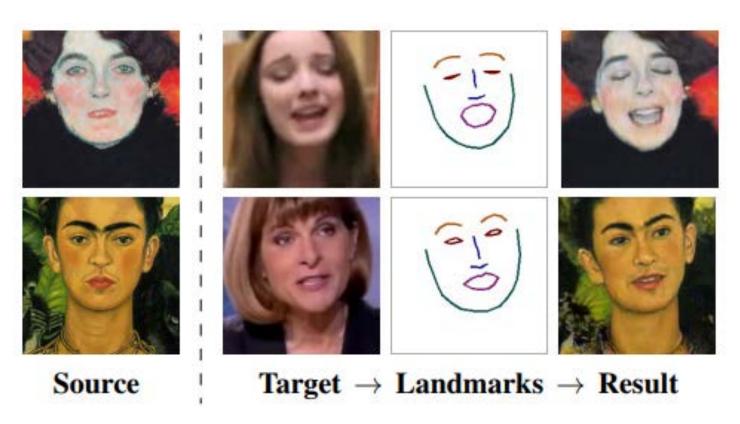
see, e.g.: Gordon, Bronskill, Bauer, Nowozin, Turner. VERSA: Versatile and Efficient Few-Shot Learning.

few-shot image-to-image translation



see, e.g.: Liu, Huang, Mallya, Karras, Aila, Lehtinen, Kautz. Few-Shot Unsupervised Image-to-Image Translation.

generating talking heads from images

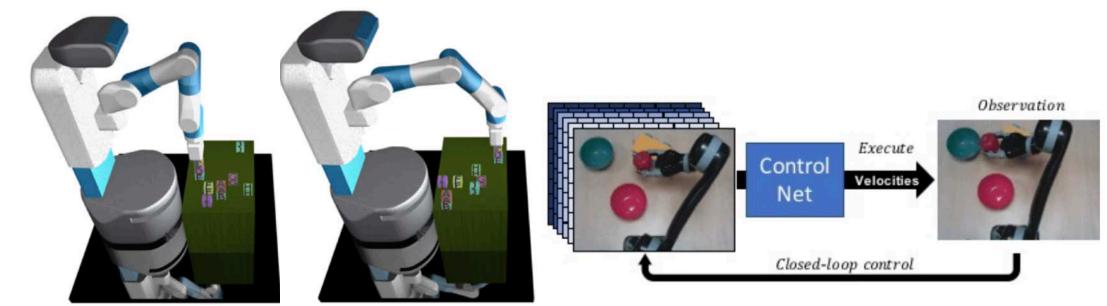


see, e.g.: Zakharov, Shysheya, Burkov, Lempitsky. Few-Shot Adversarial Learning of Realistic Neural Talking Head Models

One-Shot Imitation Learning

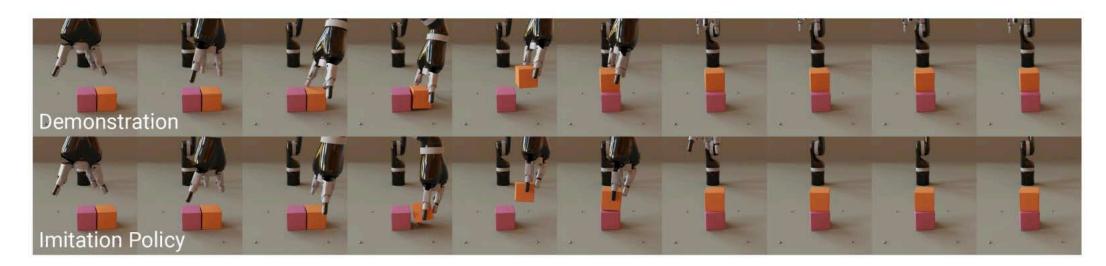
Goal: Given one demonstration of a new task, learn a policy meta-learning with supervised imitation learning

Black-box amortized inference



Duan et al. One-Shot Imitation Learning '17

James et al. Task-Embedded Control '18

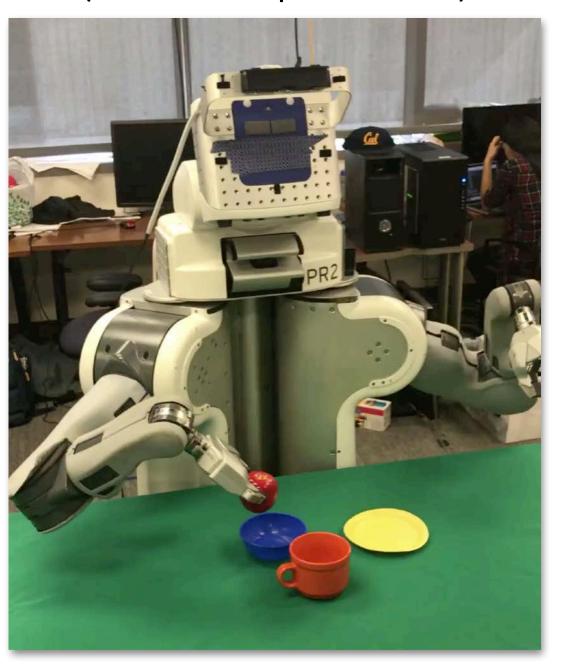


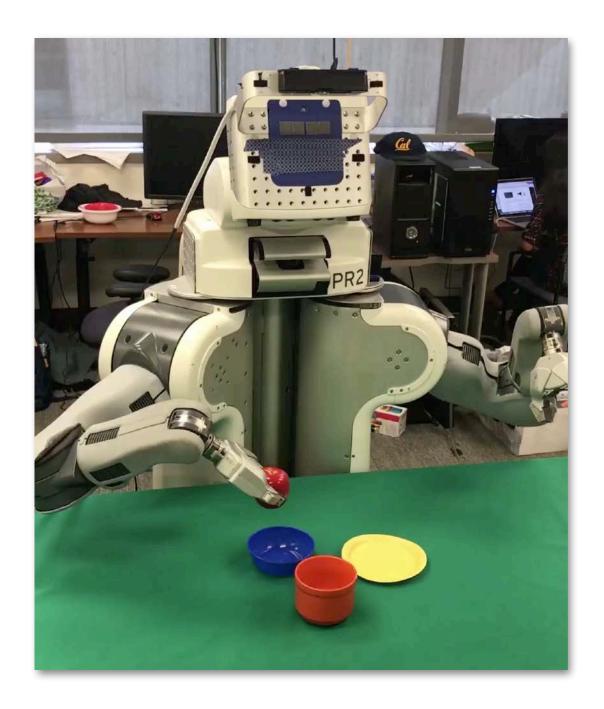
Le Paine et al. One-Shot High Fidelity Imitation '19

Optimization-based inference

Finn*, Yu* et al. Meta Imitation Learning '17

input demo
(via teleoperation)



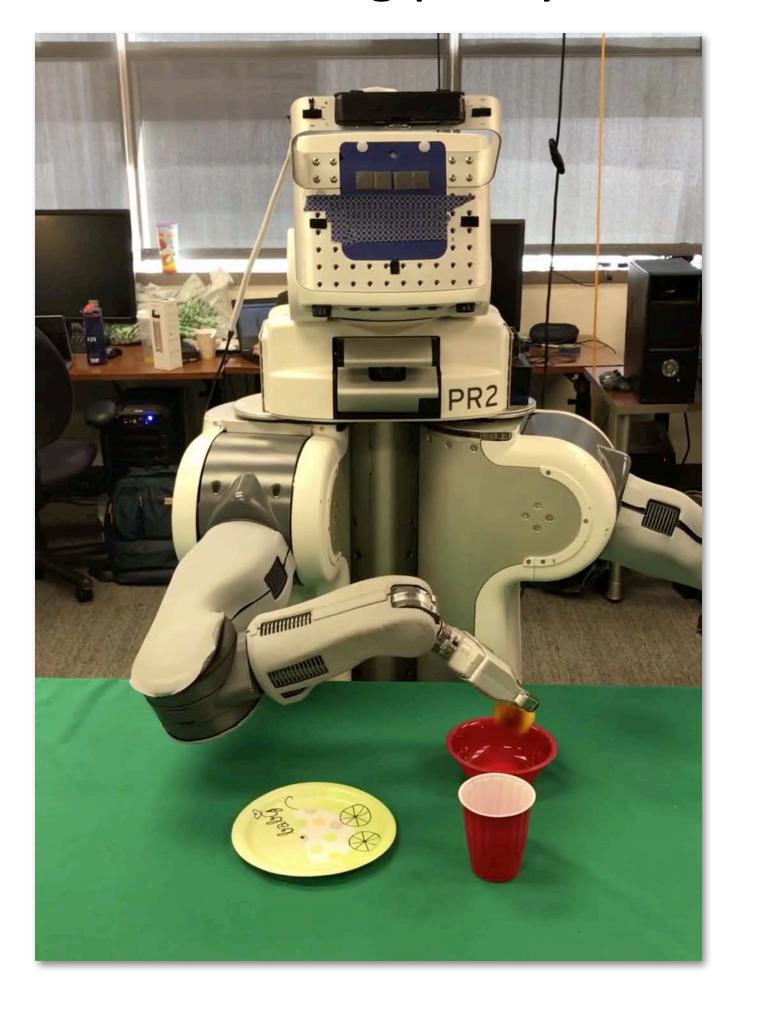


Also: One-shot inverse RL (Xu et al. MandRIL '18, Gleave & Habryka '18), One-shot hierarchical imitation (Yu et al. '18)

Learning to Learn from Weak Supervision

input human demo

resulting policy



Learning to Learn from Weak Supervision

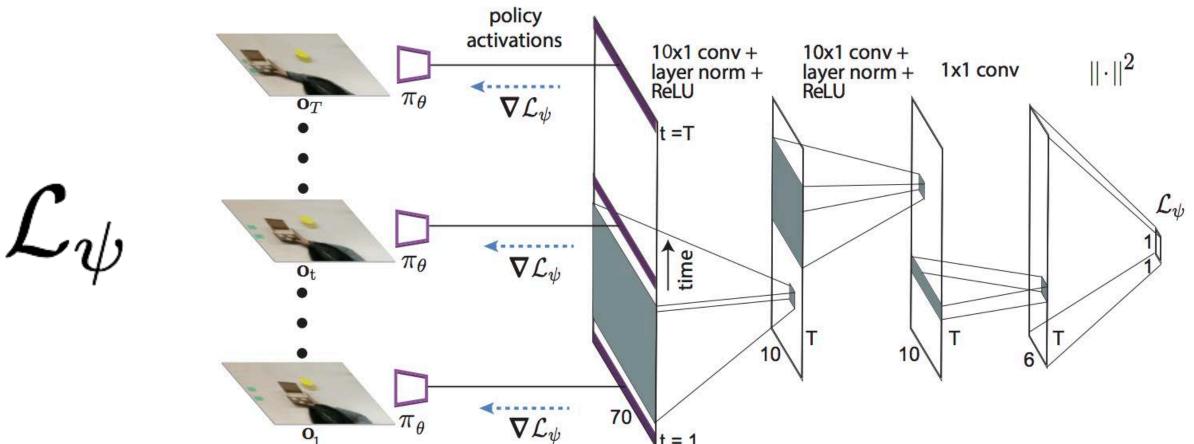
$$\min_{\theta} \sum_{\text{task } i} \mathcal{L}_{\text{test}}^{i}(\theta - \alpha \nabla_{\theta} \mathcal{L}_{\text{train}}^{i}(\theta)) \qquad \qquad \theta' \leftarrow \theta - \alpha \nabla_{\theta} \mathcal{L}(\theta)$$
fully supervised weakly supervised weakly supervised

meta-test

$$heta' \leftarrow heta - lpha
abla_{ heta} \mathcal{L}(heta)$$
weakly supervised

What if the weakly supervised loss is unavailable?

$$\min_{\theta, \psi} \sum_{\text{task } i} \mathcal{L}_{\text{test}}^{i}(\theta - \alpha \nabla_{\theta} \mathcal{L}_{\psi}^{i}(\theta))$$



Yu*, Finn*, Xie, Dasari, Zhang, Abbeel, Levine RSS '18

Grant, Finn, Peterson, Abbott, Levine, Darrell, Griffiths NIPS CIAI Workshop '17

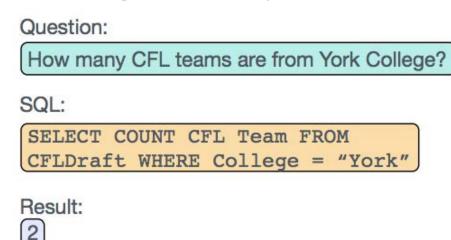
Meta-Learning for Language

Adapting to new programs

Meta Program Induction
Learn new program from a
few I/O examples.

Devlin*, Bunel* et al. NeurIPS '17

Program Synthesis

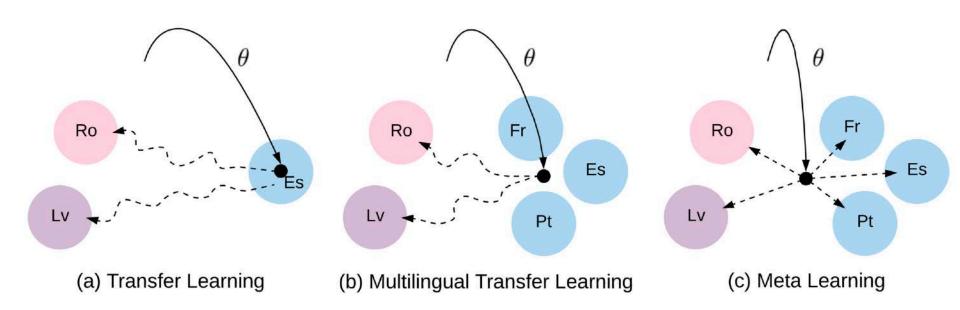


Construct pseudo-tasks with relevance function

Huang et al. NAACL '18

Adapting to new languages

Low-Resource Neural Machine Translation



Learn to translate new language pair w/o a lot of paired data?

Gu et al. EMNLP '18

Learning new words

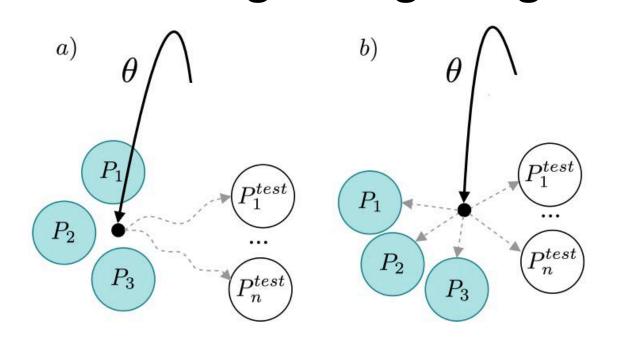
One-Shot Language Modeling

Learn how to use a new word from one example usage.

Vinyals et al. Matching Networks, '16

Adapting to new personas

Personalizing Dialogue Agents



Adapt dialogue to a persona with a few examples

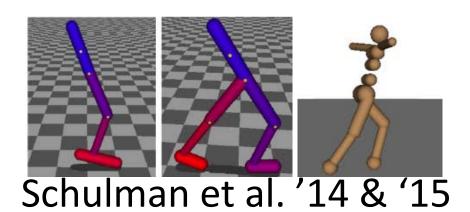
Lin*, Madotto* et al. ACL '19

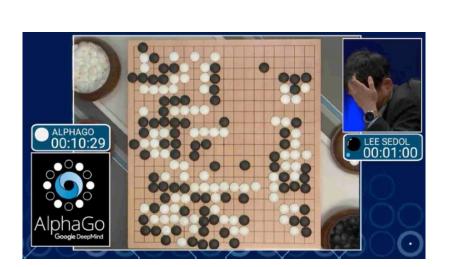
Outline

- Problem statement
- Meta-learning algorithms
 - Black-box adaptation
 - Optimization-based inference
 - Non-parametric methods
 - Bayesian meta-learning
- Meta-learning applications
 - 5 min break —
- Meta-reinforcement learning
- Challenges & frontiers

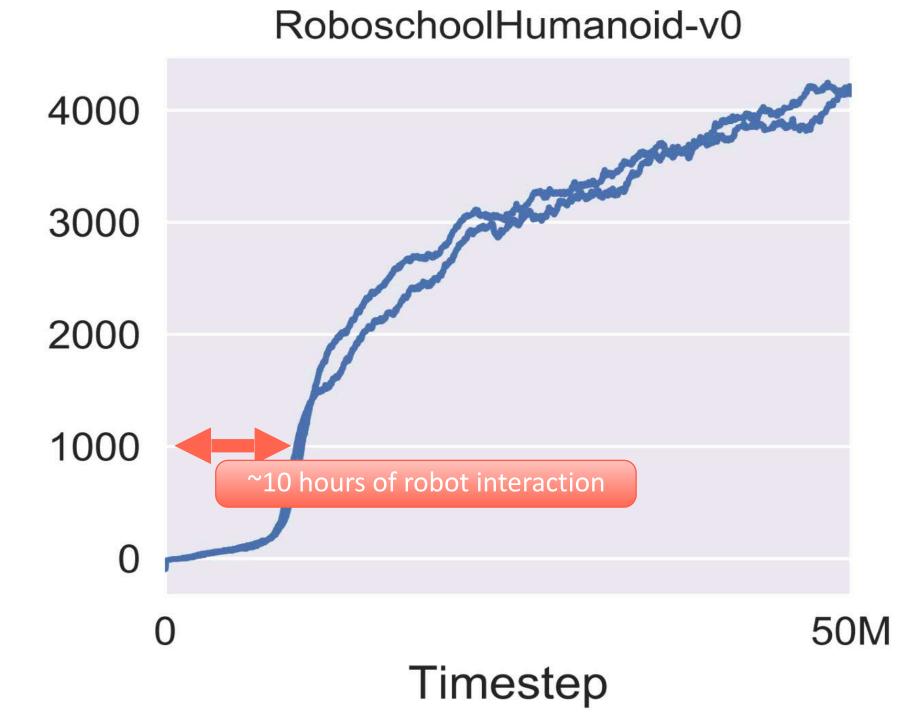
Why should we care about meta-RL?

Mnih et al. '13









graph: Schulman et al. '17

people can learn new skills **extremely** quickly

how?

we never learn from scratch!

Can we **meta-learn**reinforcement learning
"algorithms" that are much
more efficient?

The reinforcement learning problem

Markov decision process

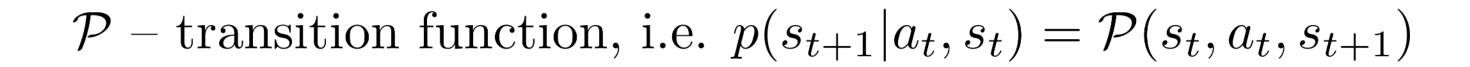
$$\mathcal{M} = \{\mathcal{S}, \mathcal{A}, \mathcal{P}, r\}$$

 \mathcal{S} – state space

states $s \in \mathcal{S}$ (discrete or continuous)

 \mathcal{A} – action space

actions $a \in \mathcal{A}$ (discrete or continuous)



r – reward function

$$r: \mathcal{S} \times \mathcal{A} \rightarrow \mathbb{R}$$

$$r(s_t, a_t)$$
 – reward

$$\pi_{\theta}(a|s)$$
 – policy with params θ

$$\theta^* = \arg\max_{\theta} E_{\pi_{\theta}} \left[\sum_{t=0}^{T} r(s_t, a_t) \right]$$

expectation under π_{θ} and \mathcal{P}

Andrey Markov

Richard Bellman

The reinforcement learning problem

$$\theta^* = \arg\max_{\theta} E_{\pi_{\theta}} \left[\sum_{t=0}^{T} r(s_t, a_t) \right]$$

$$\theta^* = \arg\max_{\theta} E_{\pi_{\theta}} \left[\sum_{t=0}^{\infty} \gamma^t r(s_t, a_t) \right] \longleftarrow \text{ infinite horizon, discounted return}$$

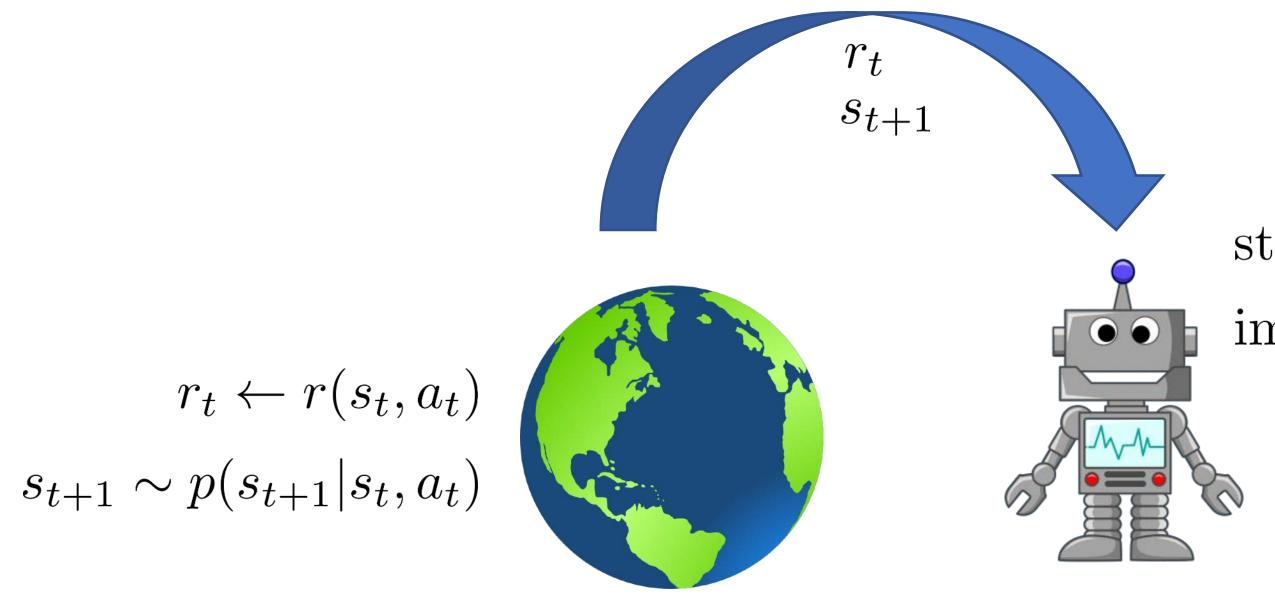
$$p_{\theta}(\mathbf{s}_1, \mathbf{a}_1, \dots, \mathbf{s}_T, \mathbf{a}_T) = p(\mathbf{s}_1) \prod_{t=1}^T \pi_{\theta}(\mathbf{a}_t | \mathbf{s}_t) p(\mathbf{s}_{t+1} | \mathbf{s}_t, \mathbf{a}_t)$$

$$\pi_{\theta}(\tau)$$

$$\theta^{\star} = \arg \max_{\theta} E_{\pi_{\theta}(\tau)} \left[R(\tau) \right]$$

Every RL algorithm in a nutshell

$$\theta^* = \arg\max_{\theta} E_{\pi_{\theta}(\tau)} [R(\tau)]$$



store (s_t, a_t, s_{t+1}, r_t) in buffer \mathcal{B} improve π_{θ} ...

...directly, via policy gradients

...via value function or Q-function

...implicitly, via model $\hat{p}(s_{t+1}|s_t, a_t)$

Qs: slido.com/meta

pick $a_t \sim \pi_{\theta}(a_t|s_t)$

Meta-learning so far...

learn θ such that $\phi_i = f_{\theta}(\mathcal{D}_i^{\text{tr}})$ is good for $\mathcal{D}_i^{\text{ts}}$

Probabilistic view:

$$\theta^* = \arg\max_{\theta} \sum_{i=1}^{n} \log p(\phi_i | \mathcal{D}_i^{\text{ts}})$$
where $\phi_i = f_{\theta}(\mathcal{D}_i^{\text{tr}})$

Deterministic view:

$$\theta^* = \arg\min_{\theta} \sum_{i=1}^n \mathcal{L}(\phi_i, \mathcal{D}_i^{\mathrm{ts}})$$
where $\phi_i = f_{\theta}(\mathcal{D}_i^{\mathrm{tr}})$

$$\mathcal{D}_{ ext{meta-train}} = \{ (\mathcal{D}_1^{ ext{tr}}, \mathcal{D}_1^{ ext{ts}}), \dots, (\mathcal{D}_n^{ ext{tr}}, \mathcal{D}_n^{ ext{ts}}) \}$$
 $\mathcal{D}_i^{ ext{tr}} = \{ (x_1^i, y_1^i), \dots, (x_k^i, y_k^i) \}$
 $\mathcal{D}_i^{ ext{ts}} = \{ (x_1^i, y_1^i), \dots, (x_l^i, y_l^i) \}$

The meta reinforcement learning problem

"Generic" learning (deterministic view):

$$extstyle{ heta}^{\star} = \arg\min_{ heta} \mathcal{L}(heta, \mathcal{D}^{\mathrm{tr}})$$

$$= f_{\mathrm{learn}}(\mathcal{D}^{\mathrm{tr}})$$

Reinforcement learning:

"Generic" meta-learning (deterministic view):

$$\theta^* = \arg\min_{\theta} \sum_{i=1}^n \mathcal{L}(\phi_i, \mathcal{D}_i^{\mathrm{ts}})$$
where $\phi_i = f_{\theta}(\mathcal{D}_i^{\mathrm{tr}})$

Meta-reinforcement learning:

$$\theta^* = \arg \max_{\theta} \sum_{i=1}^n E_{\pi_{\phi_i}(\tau)}[R(\tau)]$$
where $\phi_i = f_{\theta}(\mathcal{M}_i)$

$$\downarrow$$
MDP for task i

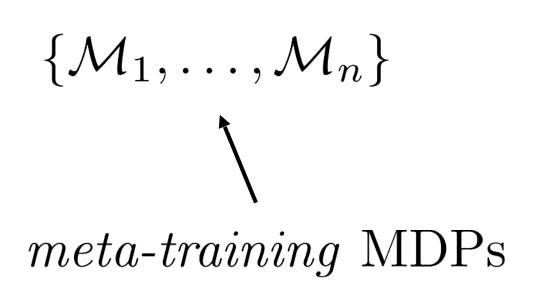
The meta reinforcement learning problem

$$\theta^* = \arg\max_{\theta} \sum_{i=1}^n E_{\pi_{\phi_i}(\tau)}[R(\tau)]$$
where $\phi_i = f_{\theta}(\mathcal{M}_i)$

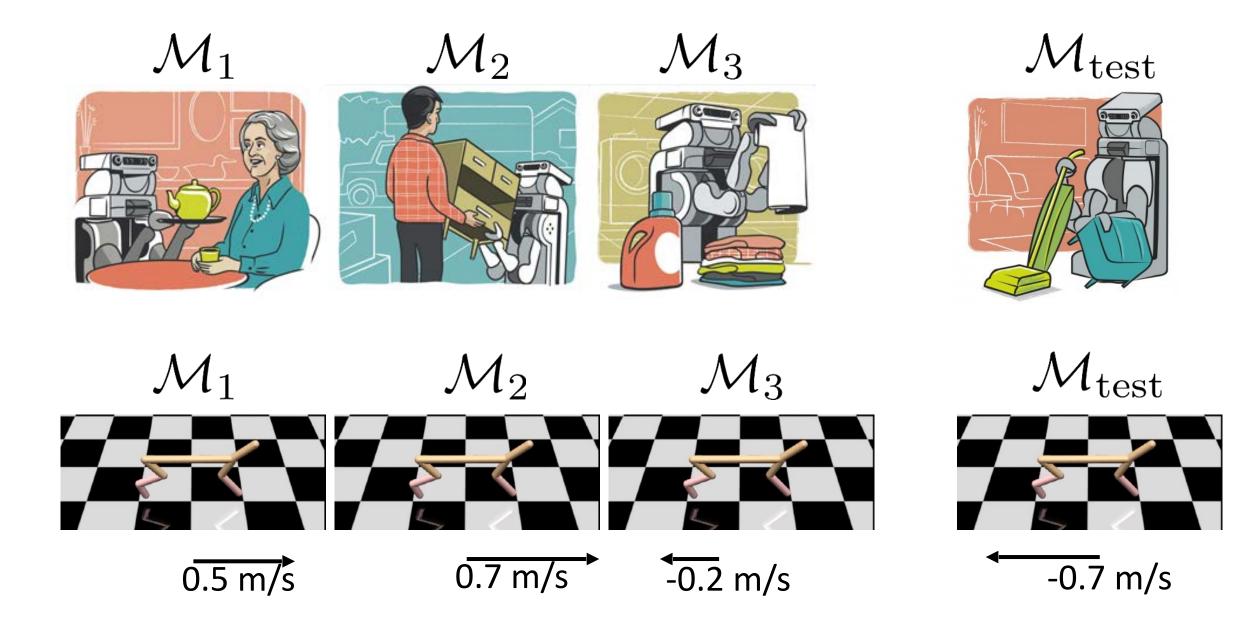
assumption: $\mathcal{M}_i \sim p(\mathcal{M})$

meta test-time:

sample
$$\mathcal{M}_{\text{test}} \sim p(\mathcal{M})$$
, get $\phi_i = f_{\theta}(\mathcal{M}_{\text{test}})$



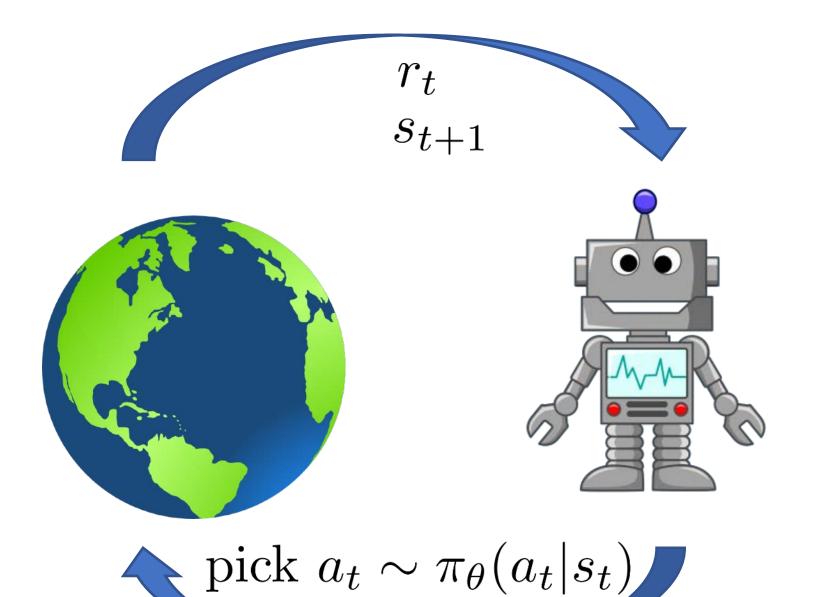
Some examples:



Meta-RL with recurrent policies

$$\theta^* = \arg\max_{\theta} \sum_{i=1}^n E_{\pi_{\phi_i}(\tau)}[R(\tau)]$$

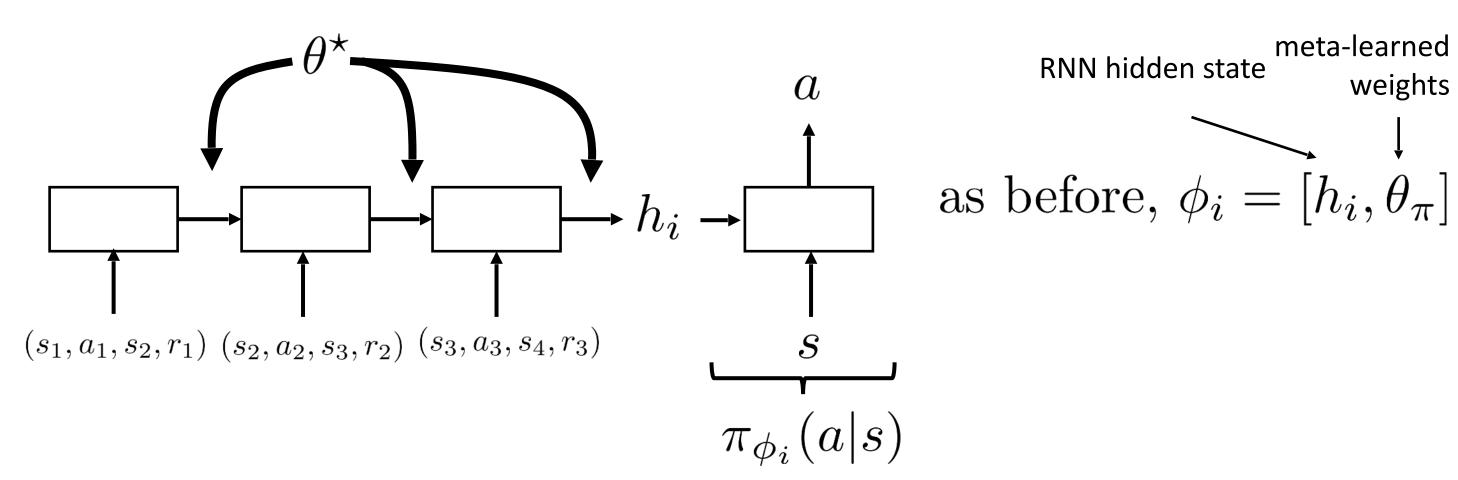
where $\phi_i = f_{\theta}(\mathcal{M}_i)$



use (s_t, a_t, s_{t+1}, r_t) to improve π_{θ}

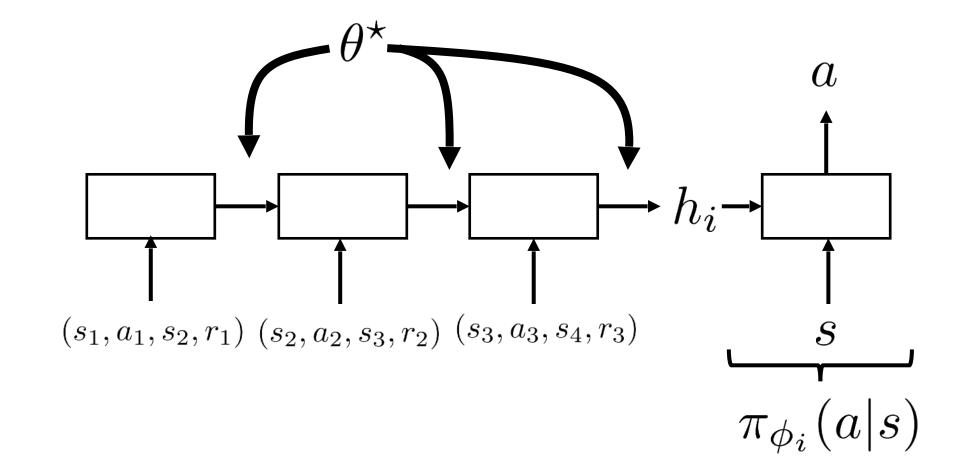
main question: how to implement $f_{\theta}(\mathcal{M}_i)$? what should $f_{\theta}(\mathcal{M}_i)$ do?

- 1. improve policy with experience from \mathcal{M}_i $\{(s_1, a_1, s_2, r_1), \dots, (s_T, a_T, s_{T+1}, r_T)\}$
- 2. (new in RL): choose how to interact, i.e. choose a_t meta-RL must also *choose* how to *explore*!



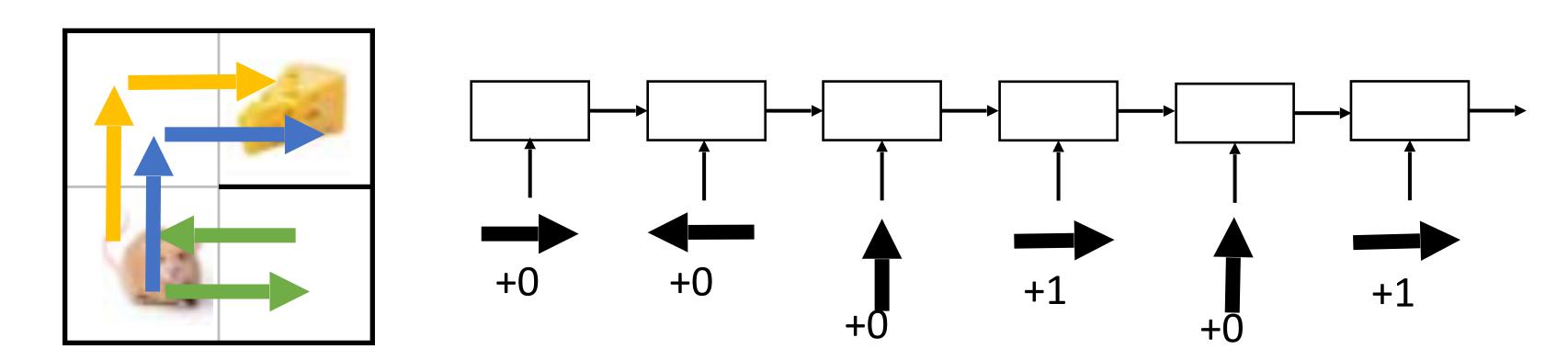
Meta-RL with recurrent policies

$$\theta^* = \arg\max_{\theta} \sum_{i=1}^{n} E_{\pi_{\phi_i}(\tau)}[R(\tau)]$$
where $\phi_i = f_{\theta}(\mathcal{M}_i)$

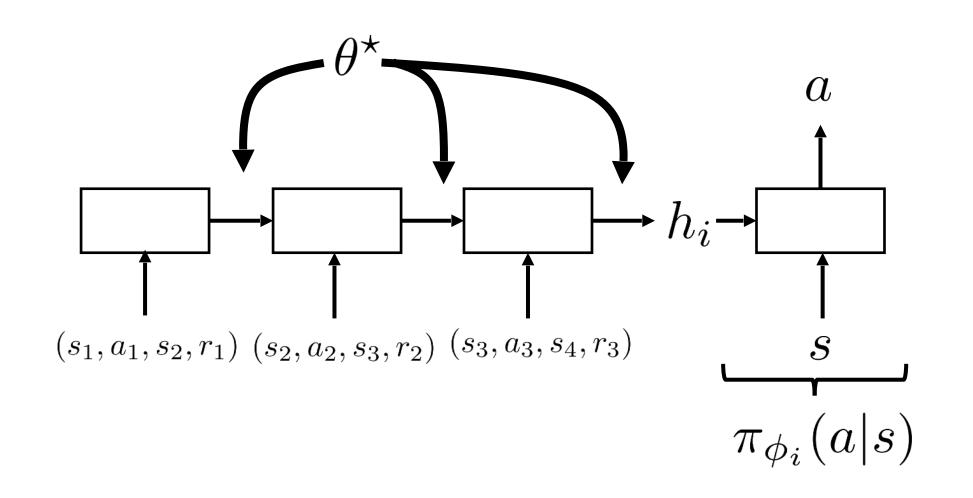


so... we just train an RNN policy?
yes!

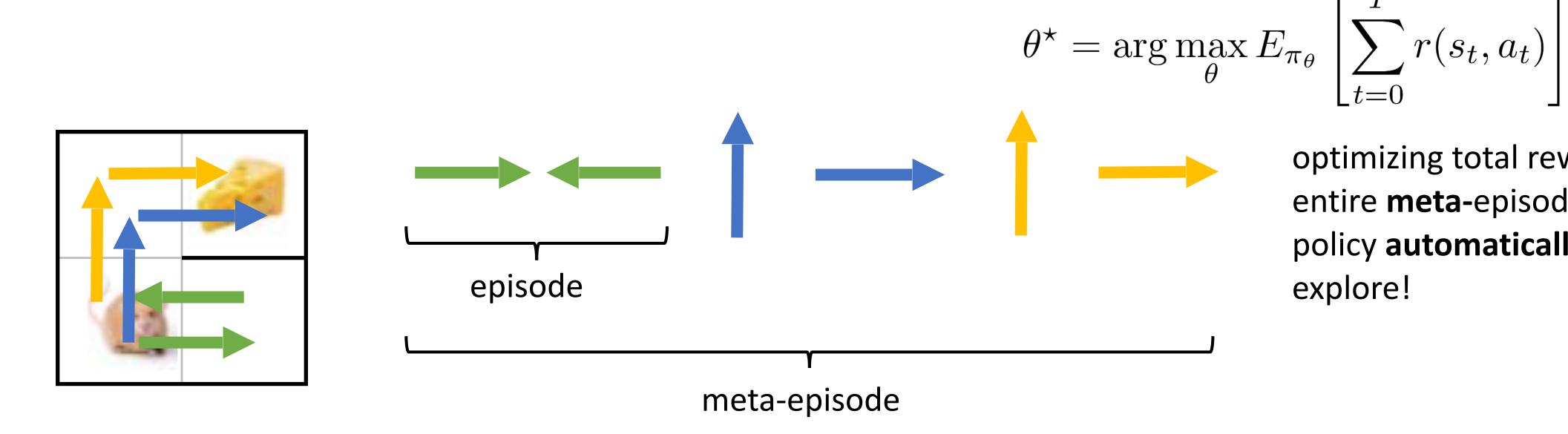
crucially, RNN hidden state is not reset between episodes!



Why recurrent policies learn to explore



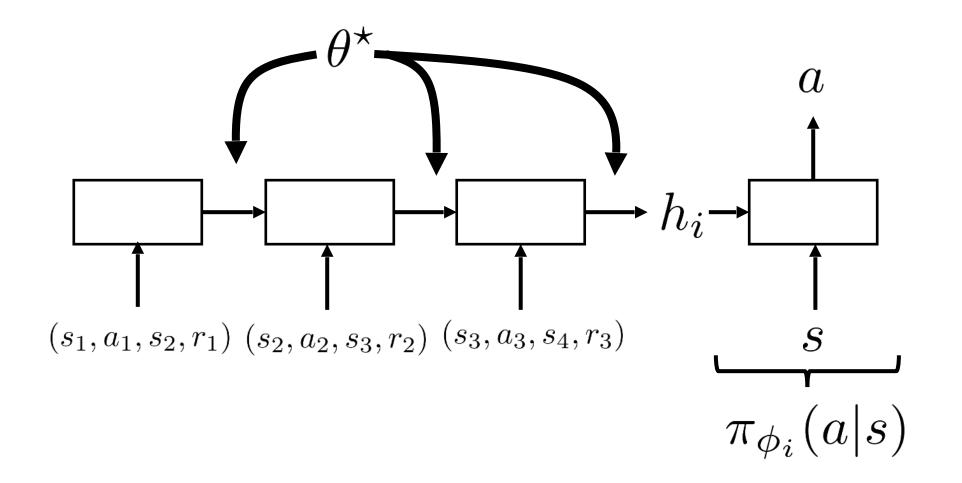
- 1. improve policy with experience from \mathcal{M}_i $\{(s_1, a_1, s_2, r_1), \dots, (s_T, a_T, s_{T+1}, r_T)\}$
- 2. (new in RL): choose how to interact, i.e. choose a_t meta-RL must also *choose* how to *explore*!

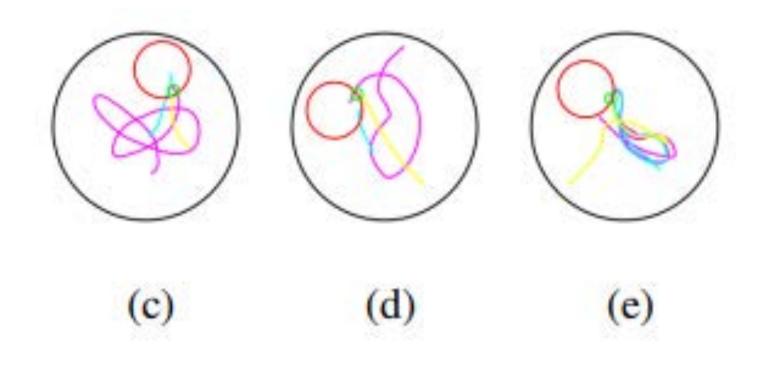


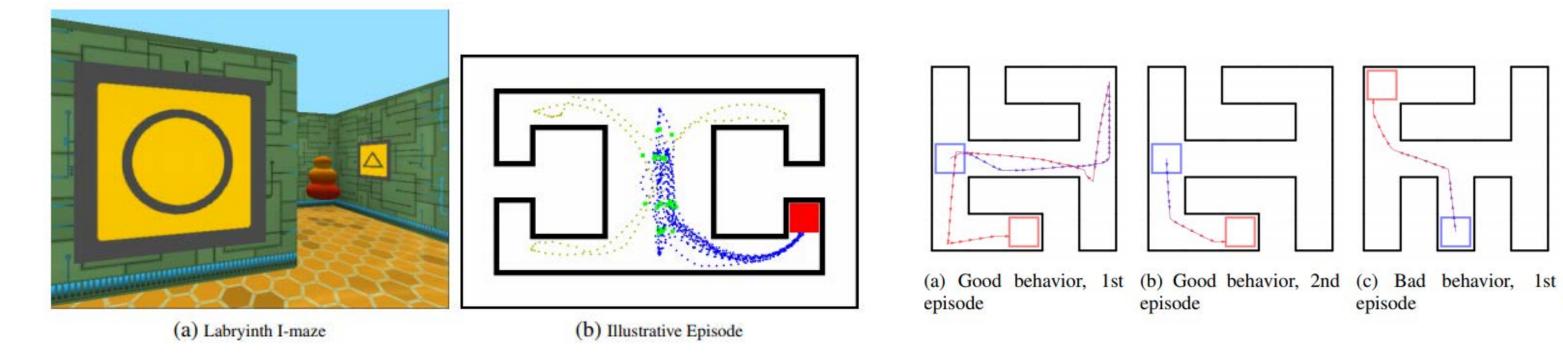
optimizing total reward over the entire meta-episode with RNN policy automatically learns to explore!

Meta-RL with recurrent policies

$$\theta^* = \arg\max_{\theta} \sum_{i=1}^{n} E_{\pi_{\phi_i}(\tau)}[R(\tau)]$$
where $\phi_i = f_{\theta}(\mathcal{M}_i)$







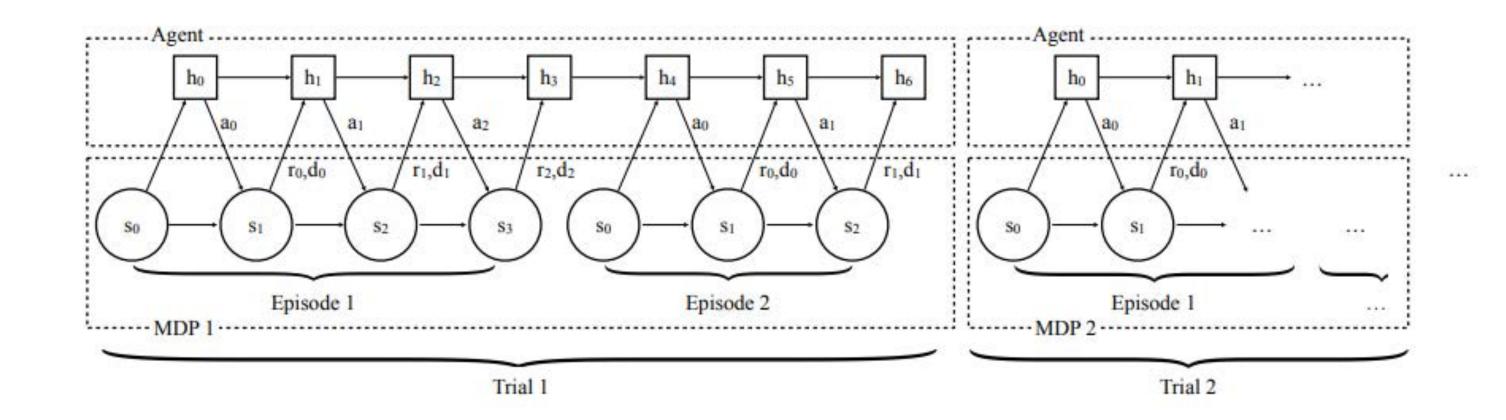
Heess, Hunt, Lillicrap, Silver. Memory-based control with recurrent neural networks. 2015.

Wang, Kurth-Nelson, Tirumala, Soyer, Leibo, Munos, Blundell, Kumaran, Botvinick. Learning to Reinforcement Learning. 2016.

Duan, Schulman, Chen, Bartlett, Sutskever, Abbeel. RL2: Fast Reinforcement Learning via Slow Reinforcement Learning. 2016.

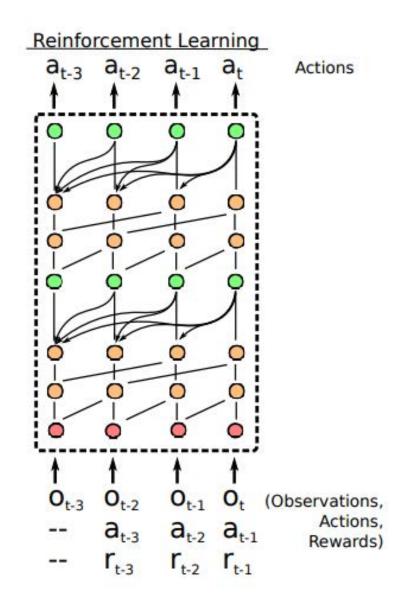
episode

Architectures for meta-RL



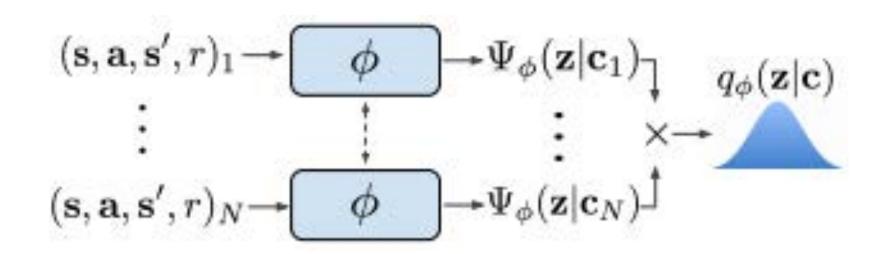
standard RNN (LSTM) architecture

Duan, Schulman, Chen, Bartlett, Sutskever, Abbeel. **RL2:** Fast Reinforcement Learning via Slow Reinforcement Learning. 2016.



attention + temporal convolution

Mishra, Rohaninejad, Chen, Abbeel. A Simple Neural Attentive Meta-Learner.



parallel permutation-invariant context encoder

Rakelly*, Zhou*, Quillen, Finn, Levine. Efficient Off-Policy Meta-Reinforcement learning via Probabilistic Context Variables.

Meta-RL as an optimization problem

$$\theta^* = \arg\max_{\theta} \sum_{i=1}^n E_{\pi_{\phi_i}(\tau)}[R(\tau)]$$
where $\phi_i = f_{\theta}(\mathcal{M}_i)$

1. improve policy with experience from \mathcal{M}_i $\{(s_1, a_1, s_2, r_1), \dots, (s_T, a_T, s_{T+1}, r_T)\}$

what if $f_{\theta}(\mathcal{M}_i)$ is *itself* an RL algorithm?

$$f_{\theta}(\mathcal{M}_i) = \theta + \alpha \nabla_{\theta} J_i(\theta)$$

requires interacting with \mathcal{M}_i to estimate $\nabla_{\theta} E_{\pi_{\theta}}[R(\tau)]$

standard RL:

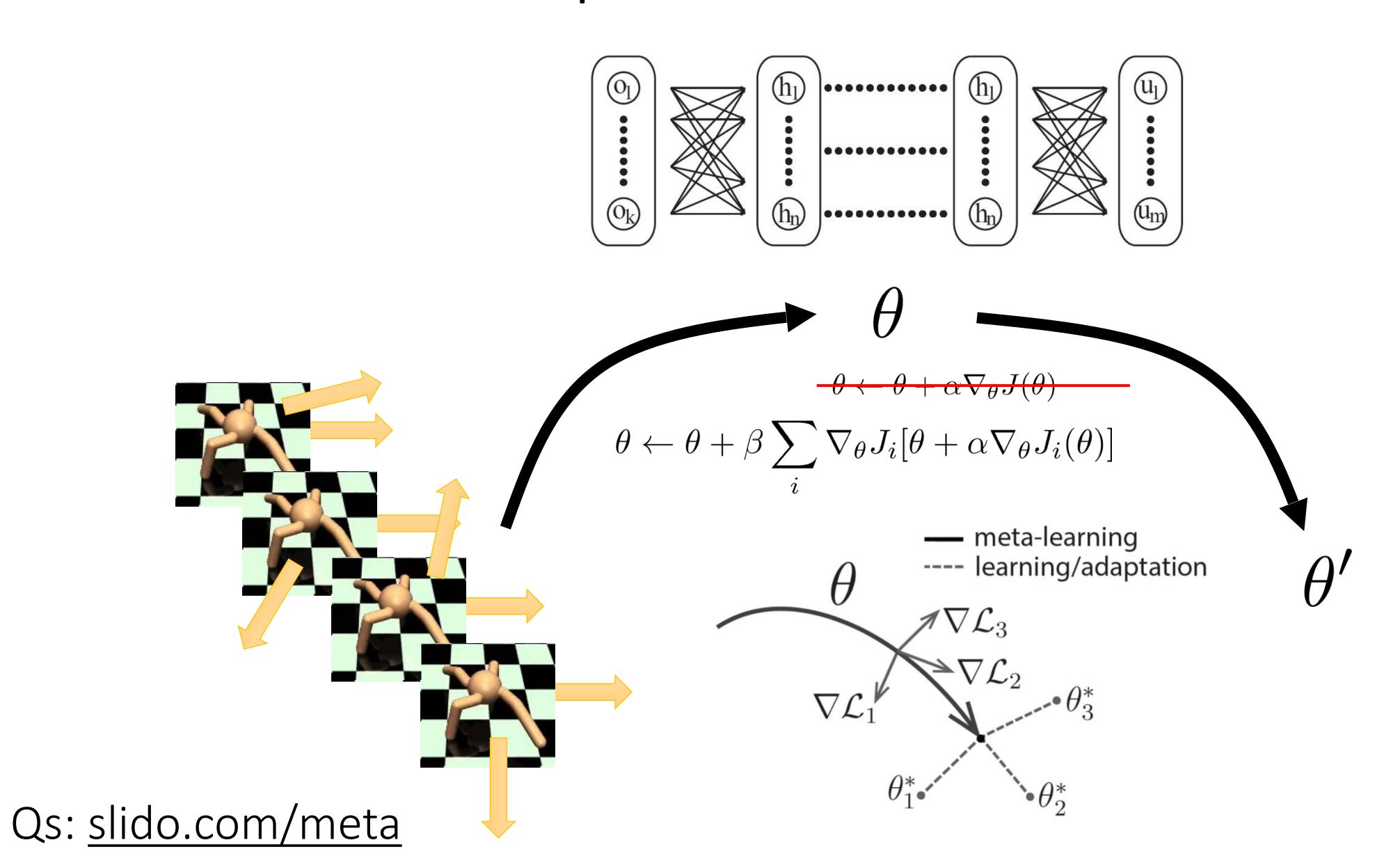
$$\theta^* = \arg\max_{\theta} E_{\pi_{\theta}(\tau)}[R(\tau)]$$

$$J(\theta)$$

$$\theta^{k+1} \leftarrow \theta_k + \alpha \nabla_{\theta^k} J(\theta^k)$$

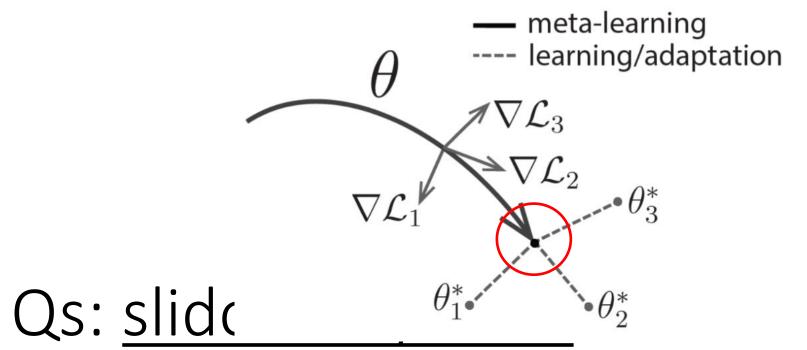
this is model-agnostic meta-learning (MAML) for RL!

MAML for RL in pictures

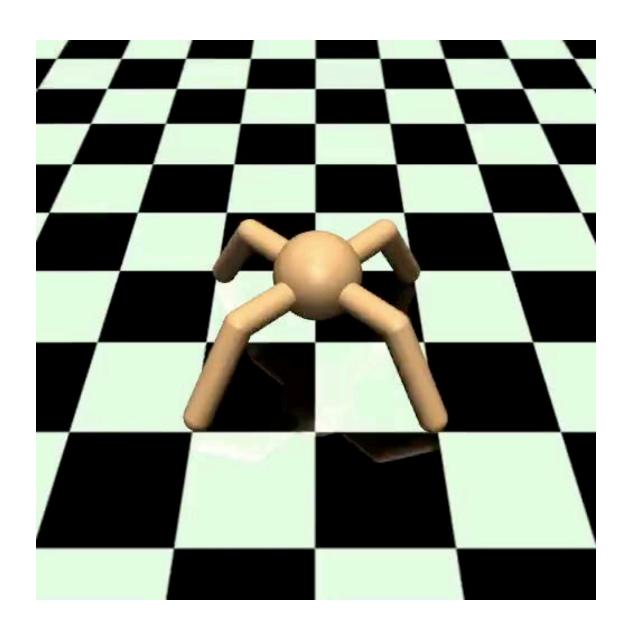


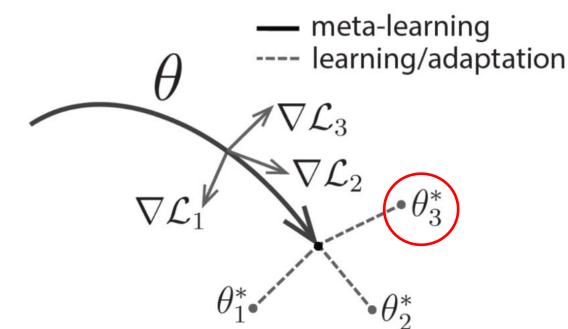
MAML for RL in videos

after MAML training

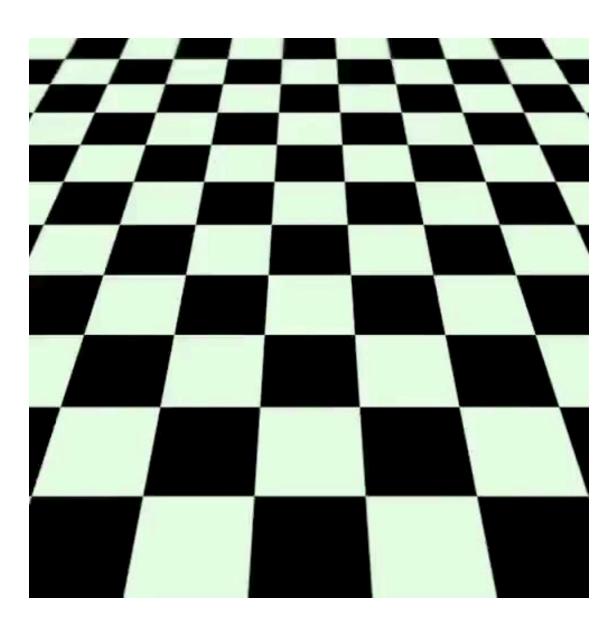


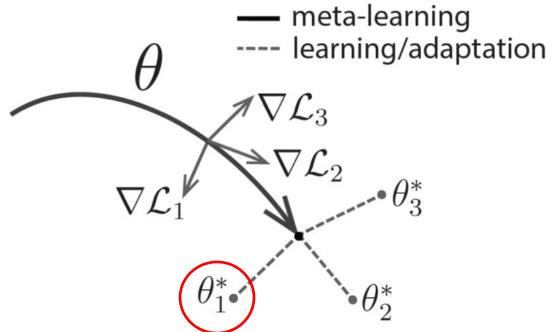
after 1 gradient step (forward reward)





after 1 gradient step (backward reward)





More on MAML/gradient-based meta-learning for RL

Better MAML meta-policy gradient estimators:

- Foerster, Farquhar, Al-Shedivat, Rocktaschel, Xing, Whiteson. DiCE: The Infinitely Differentiable Monte Carlo Estimator.
- Rothfuss, Lee, Clavera, Asfour, Abbeel. ProMP: Proximal Meta-Policy Search.

Improving exploration:

- Gupta, Mendonca, Liu, Abbeel, Levine. Meta-Reinforcement Learning of Structured Exploration Strategies.
- Stadie*, Yang*, Houthooft, Chen, Duan, Wu, Abbeel, Sutskever. Some Considerations on Learning to Explore via Meta-Reinforcement Learning.

Hybrid algorithms (not necessarily gradient-based):

- Houthooft, Chen, Isola, Stadie, Wolski, Ho, Abbeel. Evolved Policy Gradients.
- Fernando, Sygnowski, Osindero, Wang, Schaul, Teplyashin, Sprechmann, Pirtzel, Rusu. **Meta-Learning by the Baldwin Effect.**

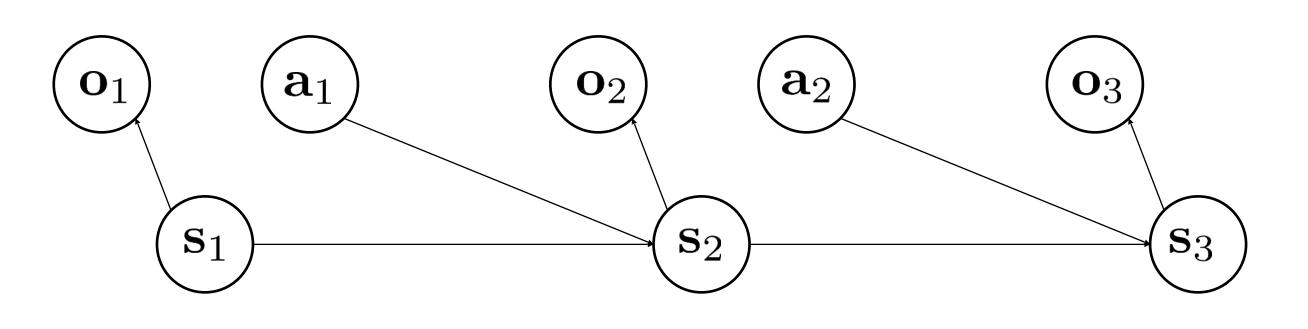
Meta-RL as... partially observed RL?

First: a quick primer on partially observed Markov decision processes (POMDPs)

$$\mathcal{M} = \{\mathcal{S}, \mathcal{A}, \mathcal{D}, \mathcal{P}\}, \mathcal{E}, r\}$$

 \mathcal{O} – observation space observations $o \in \mathcal{O}$ (discrete or continuous)

 \mathcal{E} – emission probability $p(o_t|s_t)$



policy must act on observations o_t !

$$\pi_{\theta}(a|o)$$

typically requires either:

explicit state estimation, i.e. to estimate $p(s_t|o_{1:t})$

policies with memory

Meta-RL as... partially observed RL?

 $\pi_{ heta}(a|s,z)$ encapsulates information policy needs to solve current task

learning a task = inferring z from context $(s_1, a_1, s_2, r_1), (s_2, a_2, s_3, r_2), \dots$

this is just a POMDP!

before: $\mathcal{M} = \{S, A, P, r\}$

now: $\tilde{\mathcal{M}} = {\tilde{\mathcal{S}}, \mathcal{A}, \tilde{\mathcal{O}}, \tilde{\mathcal{P}}, \mathcal{E}, r}$

$$\tilde{\mathcal{S}} = \mathcal{S} \times \mathcal{Z}$$
 $\tilde{s} = (s, z)$

$$\tilde{\mathcal{O}} = \mathcal{S}$$
 $\tilde{o} = s$

key idea: solving the POMDP $\tilde{\mathcal{M}}$ is equivalent to meta-learning!

Meta-RL as... partially observed RL?

$$\pi_{ heta}(a|s,z)$$
 encapsulates information policy needs to solve current task

learning a task = inferring z

from context $(s_1, a_1, s_2, r_1), (s_2, a_2, s_3, r_2), \dots$

this is just a POMDP!

typically requires either:

explicit state estimation, i.e. to estimate $p(s_t|o_{1:t})$

policies with memory

need to estimate $p(z_t|s_{1:t}, a_{1:t}, r_{1:t})$

exploring via posterior sampling with latent context

- some approximate posterior 1. sample $z \sim \hat{p}(z_t|s_{1:t}, a_{1:t}, r_{1:t})$ (e.g., variational)

 2. act according to $\pi_{\theta}(a|s, z)$ to collect more data

act as though z was correct!

this is not optimal! why?

but it's pretty good, both in theory and in practice!

Qs: slido.com/meta

See, e.g. Russo, Roy. Learning to Optimize via Posterior Sampling.

Variational inference for meta-RL

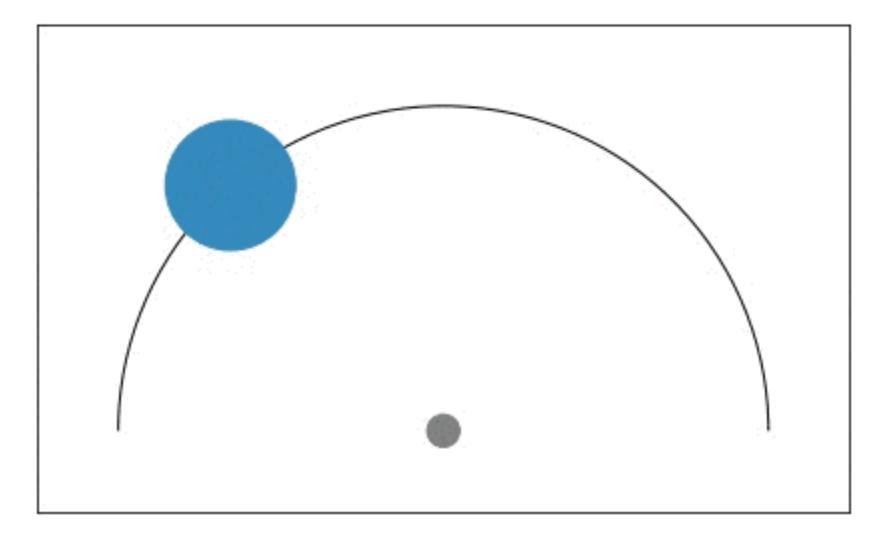
policy: $\pi_{\theta}(a_t|s_t, z_t)$

inference network: $q_{\phi}(z_t|s_1, a_1, r_1, \dots, s_t, a_t, r_t)$

(same as standard meta-RL)

$$(\theta,\phi) = \arg\max_{\theta,\phi} \frac{1}{N} \sum_{i=1}^n E_{z \sim q_\phi,\tau \sim \pi_\theta} [R_i(\tau) - D_{\mathrm{KL}}(q(z|\dots) || p(z))]$$
 maximize post-update reward stay close to prior

 $z_t \sim q_{\phi}(z_t|s_1, a_1, r_1, \dots, s_t, a_t, r_t)$



conceptually very similar to RNN meta-RL, but with stochastic z stochastic z enables exploration via $posterior\ sampling$

Qs: slido.com/meta

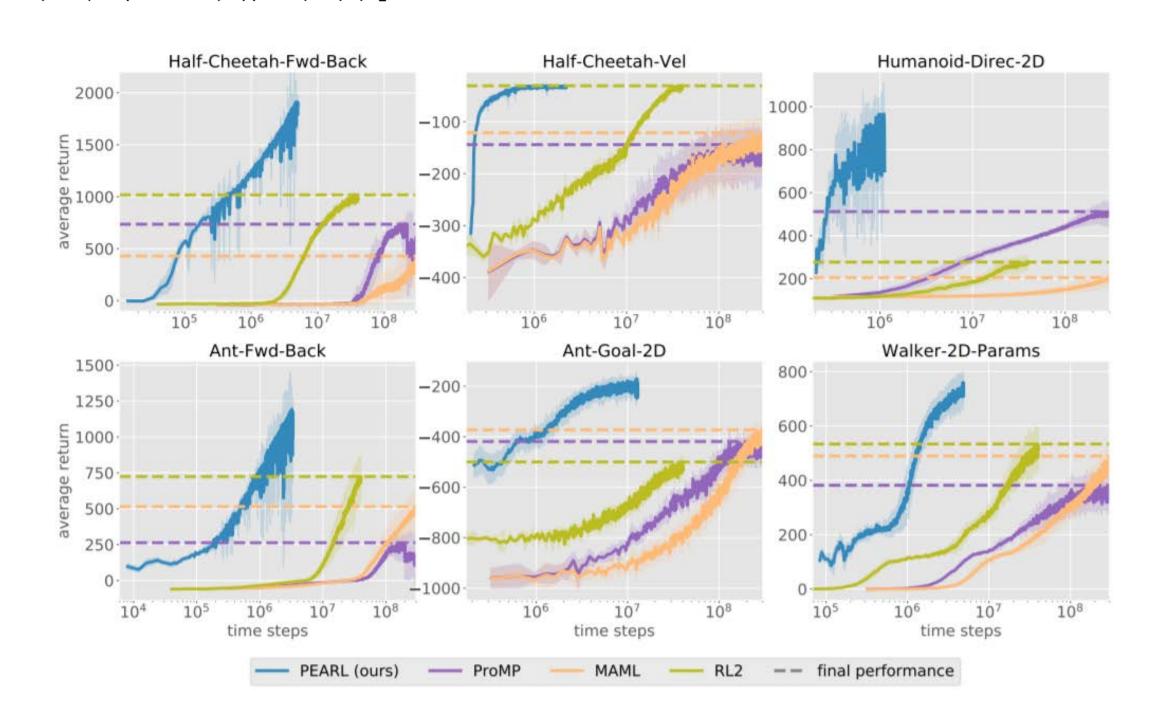
Rakelly*, Zhou*, Quillen, Finn, Levine. Efficient Off-Policy Meta-Reinforcement learning via Probabilistic Context Variables. ICML 2019.

Specific instantiation: PEARL

policy: $\pi_{\theta}(a_{t}|s_{t}, z_{t})$ $(\mathbf{s}, \mathbf{a}, \mathbf{s}', r)_{1} \longrightarrow \phi \longrightarrow \Psi_{\phi}(\mathbf{z}|\mathbf{c}_{1})_{1} \longrightarrow q_{\phi}(\mathbf{z}|\mathbf{c})$ inference network: $q_{\phi}(z_{t}|s_{1}, a_{1}, r_{1}, \dots, s_{t}, a_{t}, r_{t}) \longrightarrow \vdots \longrightarrow \phi \longrightarrow \Psi_{\phi}(\mathbf{z}|\mathbf{c}_{N})^{\perp}$ $(\mathbf{s}, \mathbf{a}, \mathbf{s}', r)_{N} \longrightarrow \phi \longrightarrow \Psi_{\phi}(\mathbf{z}|\mathbf{c}_{N})^{\perp}$

$$(\theta, \phi) = \arg\max_{\theta, \phi} \frac{1}{N} \sum_{i=1}^{n} E_{z \sim q_{\phi}, \tau \sim \pi_{\theta}} [R_{i}(\tau) - D_{\mathrm{KL}}(q(z|\ldots) || p(z))]$$
Half-Cheetah-Fwd-Back

perform maximization using soft actor-critic (SAC), state-of-the-art off-policy RL algorithm



Qs: slido.com/meta

Rakelly*, Zhou*, Quillen, Finn, Levine. Efficient Off-Policy Meta-Reinforcement learning via Probabilistic Context Variables. ICML 2019.

References on meta-RL, inference, and POMDPs

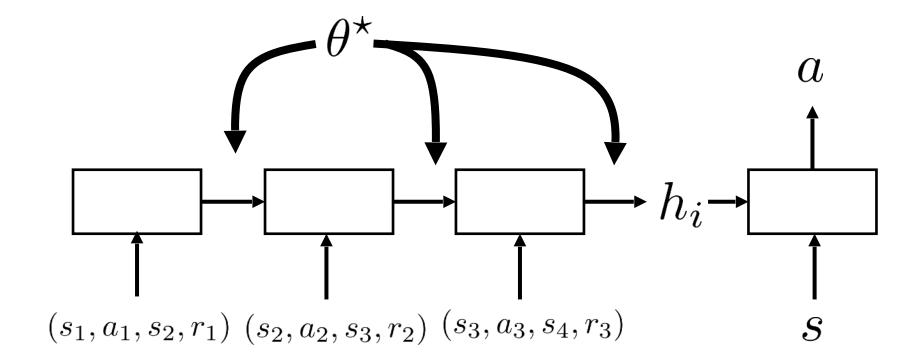
• Rakelly*, Zhou*, Quillen, Finn, Levine. Efficient Off-Policy Meta-Reinforcement learning via Probabilistic Context Variables. ICML 2019.

• Zintgraf, Igl, Shiarlis, Mahajan, Hofmann, Whiteson. Variational Task Embeddings for Fast Adaptation in Deep Reinforcement Learning.

 Humplik, Galashov, Hasenclever, Ortega, Teh, Heess. Meta reinforcement learning as task inference.

The three perspectives on meta-RL

Perspective 1: just RNN it



Perspective 2: bi-level optimization

$$f_{\theta}(\mathcal{M}_i) = \theta + \alpha \nabla_{\theta} J_i(\theta)$$

MAML for RL

Perspective 3: it's an inference problem!

$$\pi_{\theta}(a|s,z) \qquad z_t \sim p(z_t|s_{1:t},a_{1:t},r_{1:t})$$
 everything needed to solve task

Qs: slido.com/meta

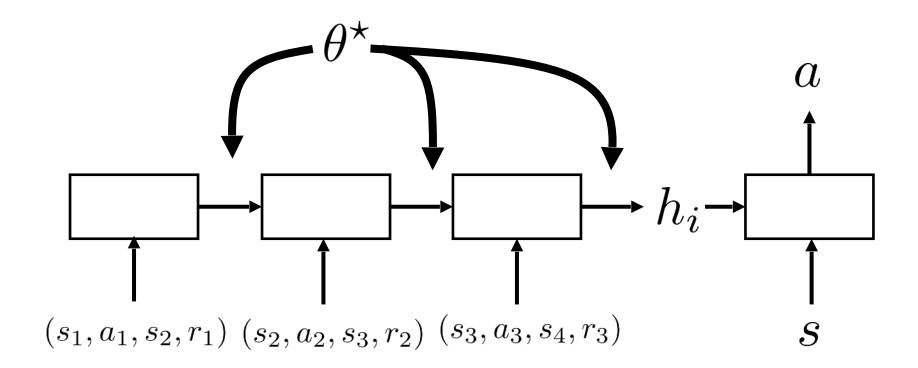
$$\theta^* = \arg\max_{\theta} \sum_{i=1}^{n} E_{\pi_{\phi_i}(\tau)}[R(\tau)]$$
where $\phi_i = f_{\theta}(\mathcal{M}_i)$

what should $f_{\theta}(\mathcal{M}_i)$ do?

- 1. improve policy with experience from \mathcal{M}_i $\{(s_1, a_1, s_2, r_1), \dots, (s_T, a_T, s_{T+1}, r_T)\}$
- 2. (new in RL): choose how to interact, i.e. choose a_t meta-RL must also *choose* how to *explore*!

The three perspectives on meta-RL

Perspective 1: just RNN it



Perspective 2: bi-level optimization

$$f_{\theta}(\mathcal{M}_i) = \theta + \alpha \nabla_{\theta} J_i(\theta)$$

MAML for RL

Perspective 3: it's an inference problem!

$$\pi_{\theta}(a|s,z) \qquad z_t \sim p(z_t|s_{1:t},a_{1:t},r_{1:t})$$
 everything needed to solve task

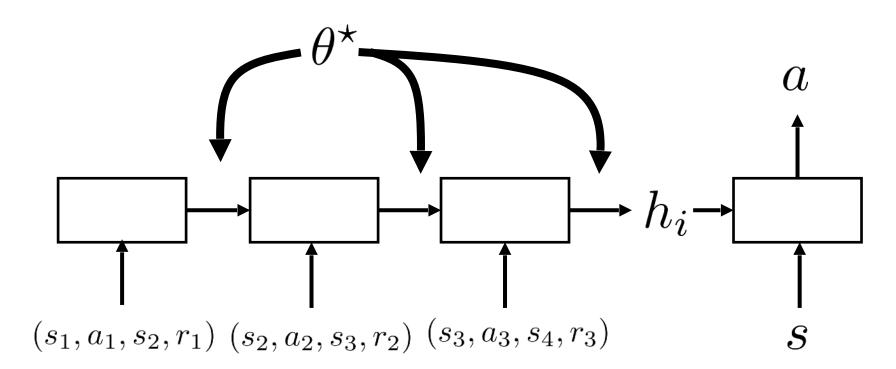
- + conceptually simple
- + relatively easy to apply
- vulnerable to meta-overfitting
- challenging to optimize in practice
- + good extrapolation ("consistent")
- + conceptually elegant
- complex, requires many samples
- + simple, effective exploration via posterior sampling
- + elegant reduction to solving a special POMDP
- vulnerable to meta-overfitting
- challenging to optimize in practice

But they're not that different!

just perspective 1, but with stochastic hidden variables!

i.e.,
$$\phi = \mathbf{z}$$

Perspective 1: just RNN it



Perspective 2: bi-level optimization

$$f_{\theta}(\mathcal{M}_i) = \theta + \alpha \nabla_{\theta} J_i(\theta)$$

MAML for RL

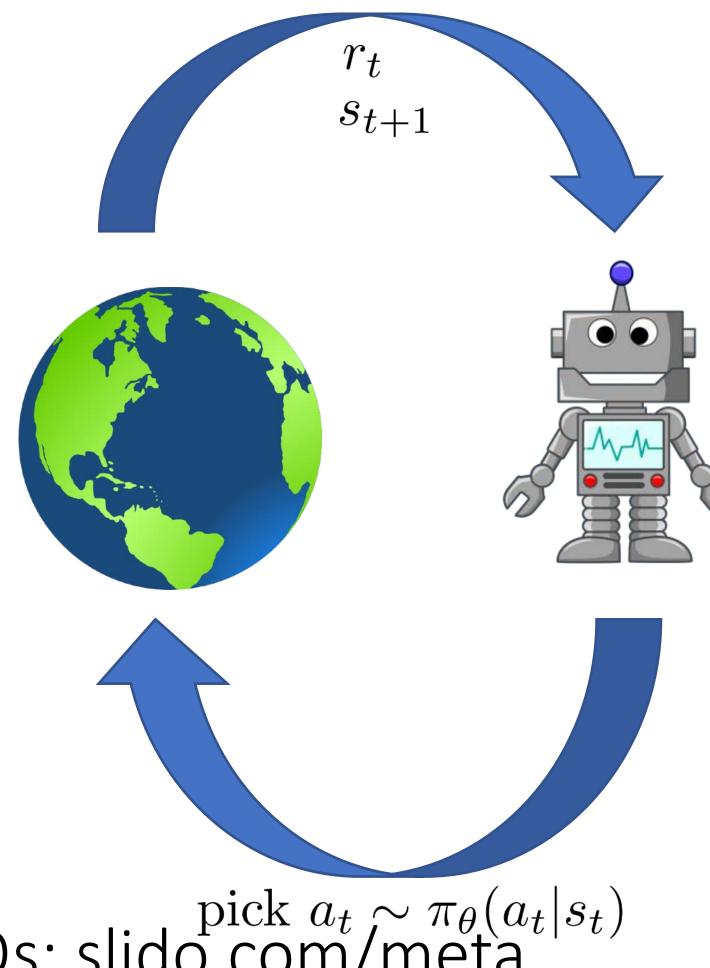
Perspective 3: it's an inference problem!

$$\pi_{\theta}(a|s,z) \qquad z_t \sim p(z_t|s_{1:t},a_{1:t},r_{1:t})$$
 everything needed to solve task

just a particular architecture choice for these

Additional Topics in Meta-RL

$$\theta^* = \arg\max_{\theta} E_{\pi_{\theta}(\tau)} [R(\tau)]$$



improve π_{θ} ...

...directly, via policy gradients

...via value function or Q-function

...implicitly, via model $\hat{p}(s_{t+1}|s_t, a_t)$

short sketch of model-based RL:

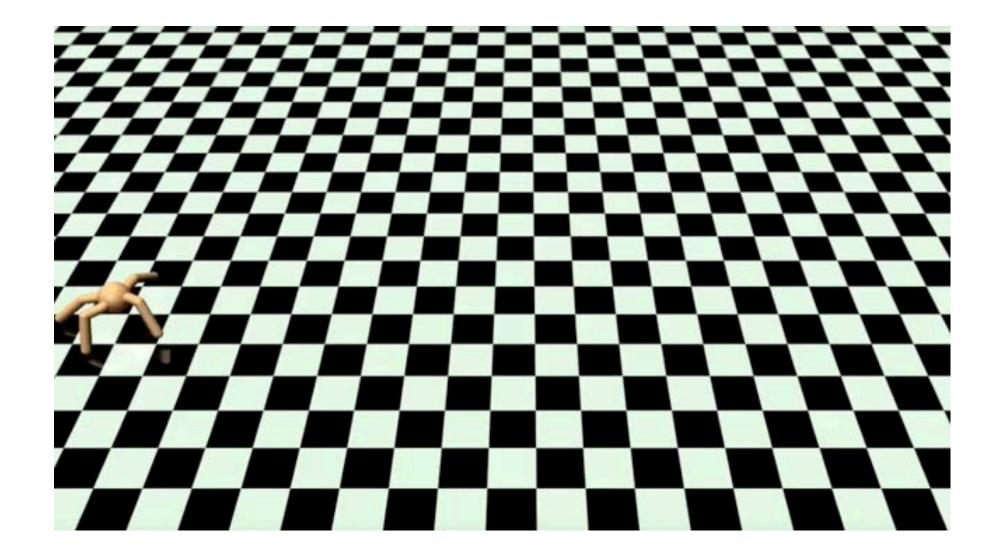
- 1. collect data \mathcal{B}
- 2. use \mathcal{B} to get $\hat{p}(s_{t+1}|s_t, a_t)$ 3. use $\hat{p}(s_{t+1}|s_t, a_t)$ to $plan \ a$

why?

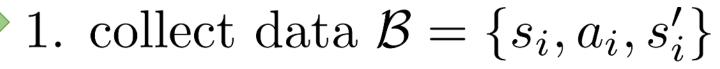
- + requires much less data vs model-free
- + a bit different due to model
- + can adapt extremely quickly!

Qs: slido.com/meta $a_t \sim \pi_{\theta}(a_t|s_t)$

example task: ant with broken leg



non-adaptive method:



- 2. train $d_{\theta}(s, a) \to s'$ on \mathcal{B}
- 3. use d_{θ} to optimize actions

$$a_t, \dots, a_{t+k} = \arg \max_{a_t, \dots, a_{t+k}} \sum_{\tau=t}^{t+k} r(s_\tau, a_\tau)$$

s.t. $s_{t+1} = d_\theta(s_t, a_t)$

a few episodes

nice idea, but how much can we really adapt in just — one (or a few) step(s)?

adaptive method:

- 1. take one step, get $\{s, a, s'\}$
- 2. $\theta \leftarrow \theta \alpha \nabla_{\theta} ||d_{\theta}(s, a) s'||^2$
- 3. use d_{θ} to optimize a_t, \ldots, a_{t+k} , take a_t

meta-training time

$$\mathcal{D}_{ ext{meta-train}} = \{(\mathcal{D}_1^{ ext{tr}}, \mathcal{D}_1^{ ext{ts}}), \dots, (\mathcal{D}_n^{ ext{tr}}, \mathcal{D}_n^{ ext{ts}})\}$$

$$\mathcal{D}_i^{\text{tr}} = \{(x_1^i, y_1^i), \dots, (x_k^i, y_k^i)\}$$

$$\mathcal{D}_i^{\text{ts}} = \{(x_1^i, y_1^i), \dots, (x_l^i, y_l^i)\}$$

$$x \leftarrow (s, a) \qquad y \leftarrow s'$$

generate each $\mathcal{D}_i^{\mathrm{tr}}, \mathcal{D}_i^{\mathrm{ts}}$:

meta-test time

adaptive method:

2.
$$\theta \leftarrow \theta - \alpha \nabla_{\theta} ||d_{\theta}(s, a) - s'||^2$$

3. use d_{θ} to optimize a_t, \ldots, a_{t+k} , take a_t

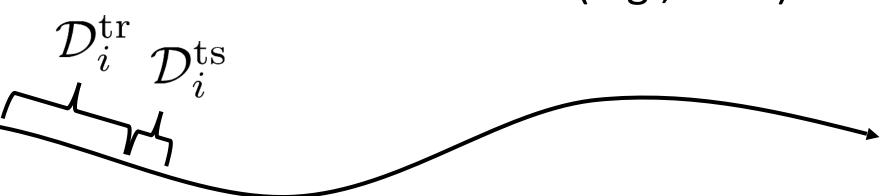
assumes past experience has many different dynamics

sample subsequence $s_t, a_t, \ldots, s_{t+k}, a_{t+k}, s_{t+k+1}$ from past experience

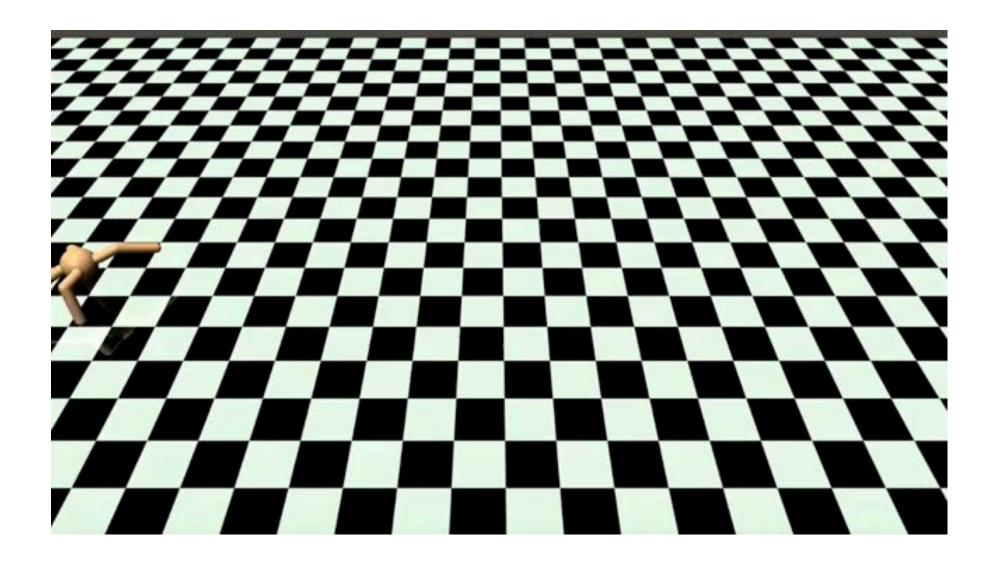
$$\mathcal{D}_i^{\mathrm{tr}} \leftarrow \{(s_t, a_t, s_{t+1}), \dots, (s_{t+k-1}, a_{t+k-1}, s_{t+k})\}$$
 could choose k = 1, but k > 1

$$\mathcal{D}_i^{\text{ts}} \leftarrow \{(s_{t+k}, a_{t+k}, s_{t+k+1})\}$$

works better (e.g., k = 5)



example task: ant with broken leg



See also:

Saemundsson, Hofmann, Deisenroth. Meta-Reinforcement Learning with Latent Variable Gaussian Processes. Nagabandi, Finn, Levine. Deep Online Learning via Meta-Learning: Continual Adaptation for Model-Based RL.

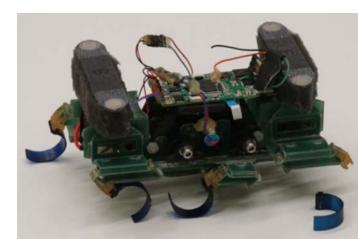
Qs: slido.com/meta

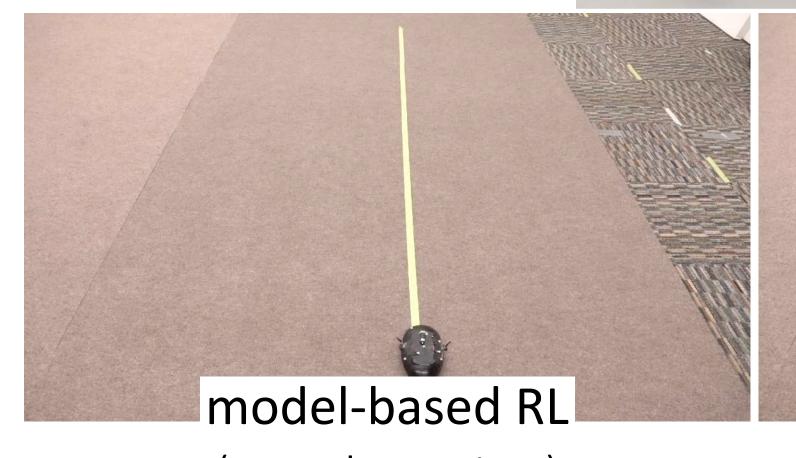
Nagabandi*, Clavera*, Liu, Fearing, Abbeel, Levine, Finn. Learning to Adapt in Dynamic, Real-World Environments Through Meta-Reinforcement Learning. ICLR 2019.

meta-test time

adaptive method:

- 1. take one step, get $\{s, a, s'\}$
- 2. $\theta \leftarrow \theta \alpha \nabla_{\theta} \|d_{\theta}(s, a) s'\|^2$
- 3. use d_{θ} to optimize a_t, \ldots, a_{t+k} , take a_t





(no adaptation)

Meta-RL and emergent phenomena

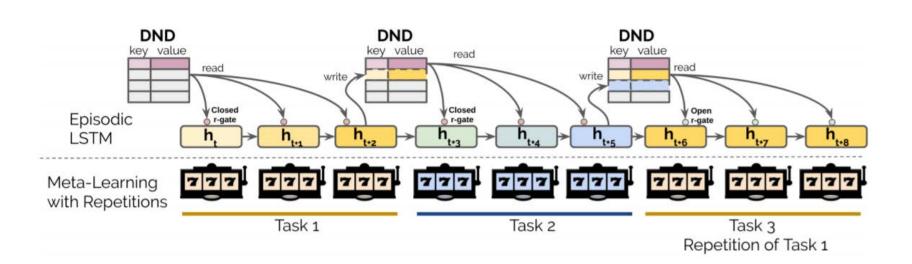
Humans and animals seemingly learn behaviors in a variety of ways:

- > Highly efficient but (apparently) model-free RL
- > Episodic recall
- ➤ Model-based RL
- > Causal inference
- \rightarrow etc.

Perhaps each of these is a separate "algorithm" in the brain

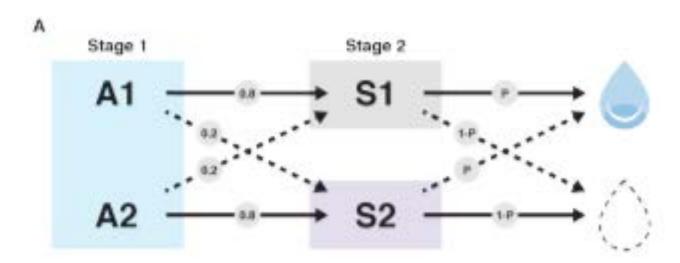
But maybe these are all emergent phenomena resulting from meta-RL?

meta-RL gives rise to episodic learning



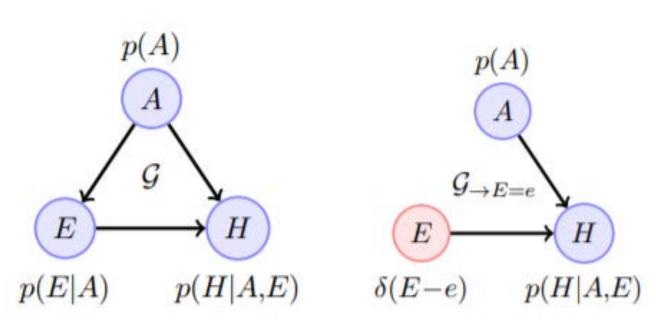
Ritter, Wang, Kurth-Nelson, Jayakumar, Blundell, Pascanu, Botvinick. **Been There, Done That: Meta-Learning with Episodic Recall.**

model-free meta-RL gives rise to model-based adaptation



Wang, Kurth-Nelson, Kumaran, Tirumala, Soyer, Leibo, Hassabis, Botvinick. **Prefrontal Cortex as a Meta-Reinforcement Learning System.**

meta-RL gives rise to causal reasoning (!)

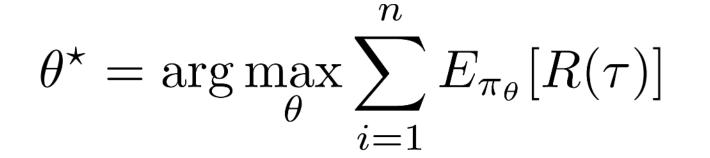


Dasgupta, Wang, Chiappa, Mitrovic, Ortega, Raposo, Hughes, Battaglia, Botvinick, Kurth-Nelson. **Causal Reasoning from Meta-Reinforcement Learning.**

Contextual policies and meta-learning

$$\theta^* = \arg\max_{\theta} \sum_{i=1}^n E_{\pi_{\phi_i}(\tau)}[R(\tau)]$$

where
$$\phi_i = f_{\theta}(\mathcal{M}_i)$$



$$\pi_{\theta}(a_t|s_t, s_1, a_1, r_1, \dots, s_{t-1}, a_{t-1}, r_{t-1})$$

 $\pi_{\theta}(a_t|s_t,\phi_i)$

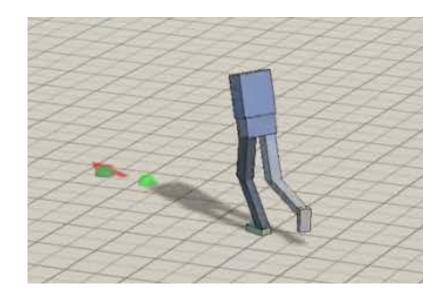
context used to infer whatever we need to solve \mathcal{M}_i i.e., z_t or ϕ_i (which are really the same thing)

"context"

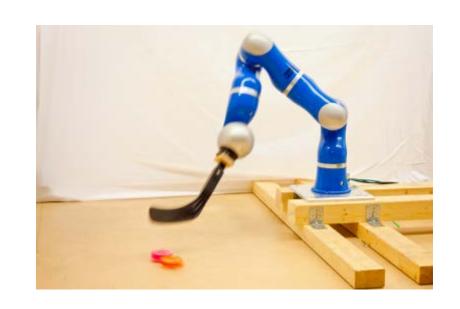
in meta-RL, the *context* is inferred from experience from \mathcal{M}_i

in multi-task RL, the context is typically given

 ϕ : stack location



 ϕ : walking direction



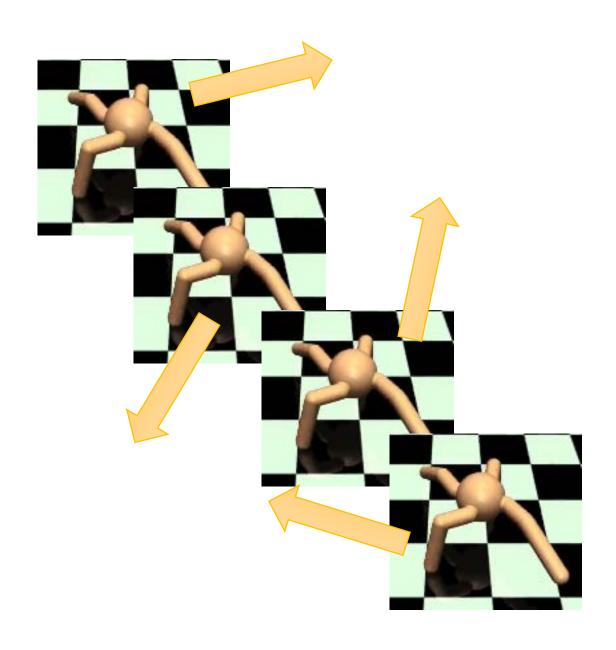
 ϕ : where to hit puck

Outline

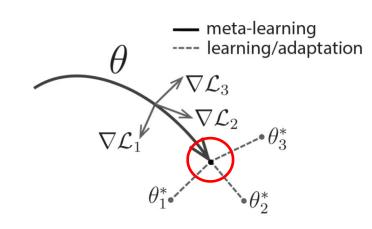
- Problem statement
- Meta-learning algorithms
 - Black-box adaptation
 - Optimization-based inference
 - Non-parametric methods
 - Bayesian meta-learning
- Meta-learning applications
 - 5 min break —
- Meta-reinforcement learning
- Challenges & frontiers

Let's Talk about Meta-Overfitting

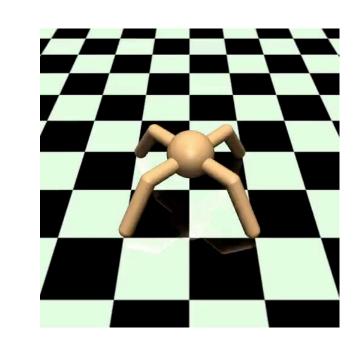
- Meta learning requires task distributions
- When there are too few meta-training tasks, we can meta-overfit
- Specifying task distributions is hard!
- What can we do?

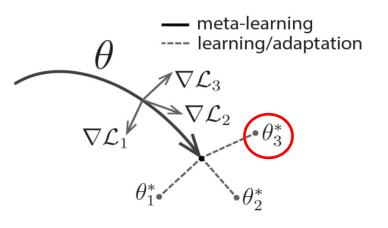


after MAML training



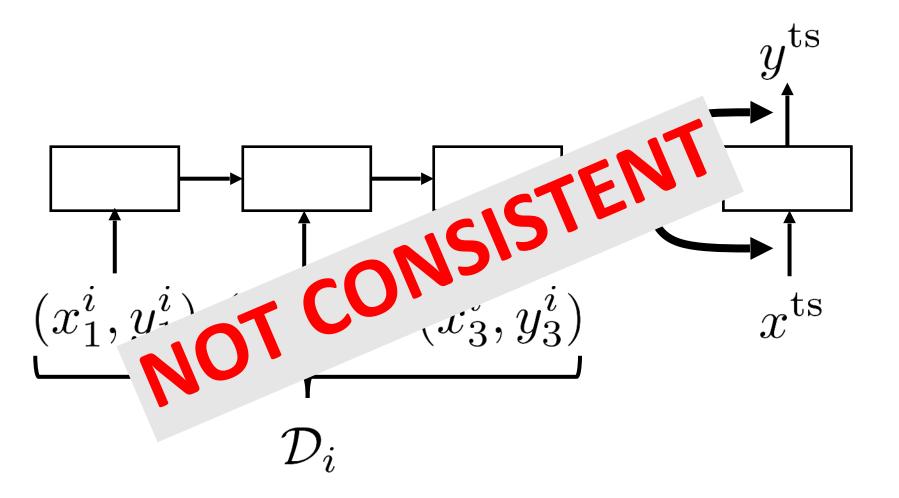
after 1 gradient step





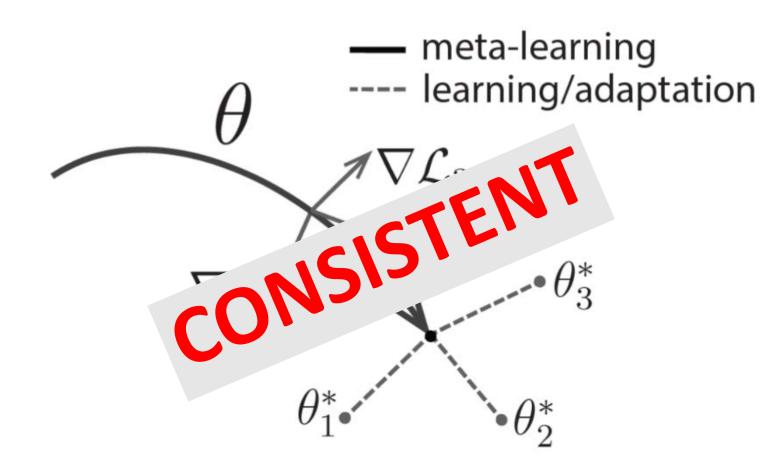
Which algorithms meta-overfit less?

black-box adaptation



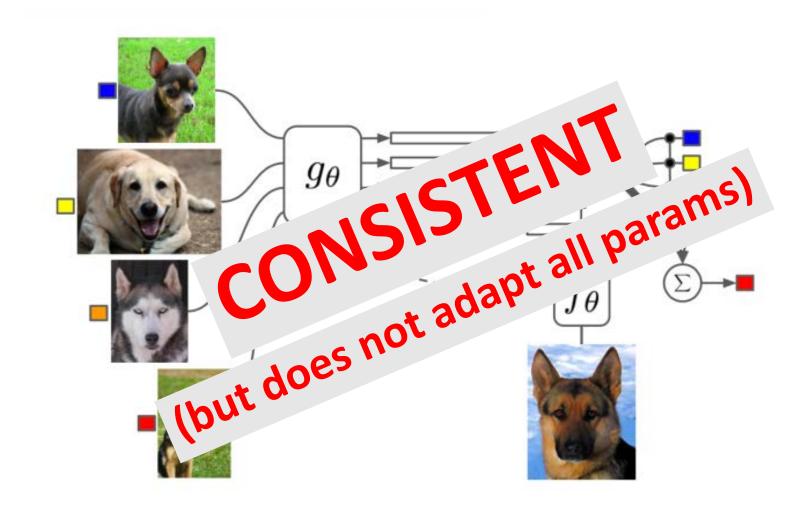
- + simple and flexible models
- relies **entirely** on extrapolation of learned adaptation procedure

optimization-based



- + at worst just gradient descent
- pure gradient descent is not efficient without benefit of good initialization

non-parametric



- + at worst just nearest neighbor
- does not adapt all parameters of metric on new data (might be nearest neighbor in very bad space)

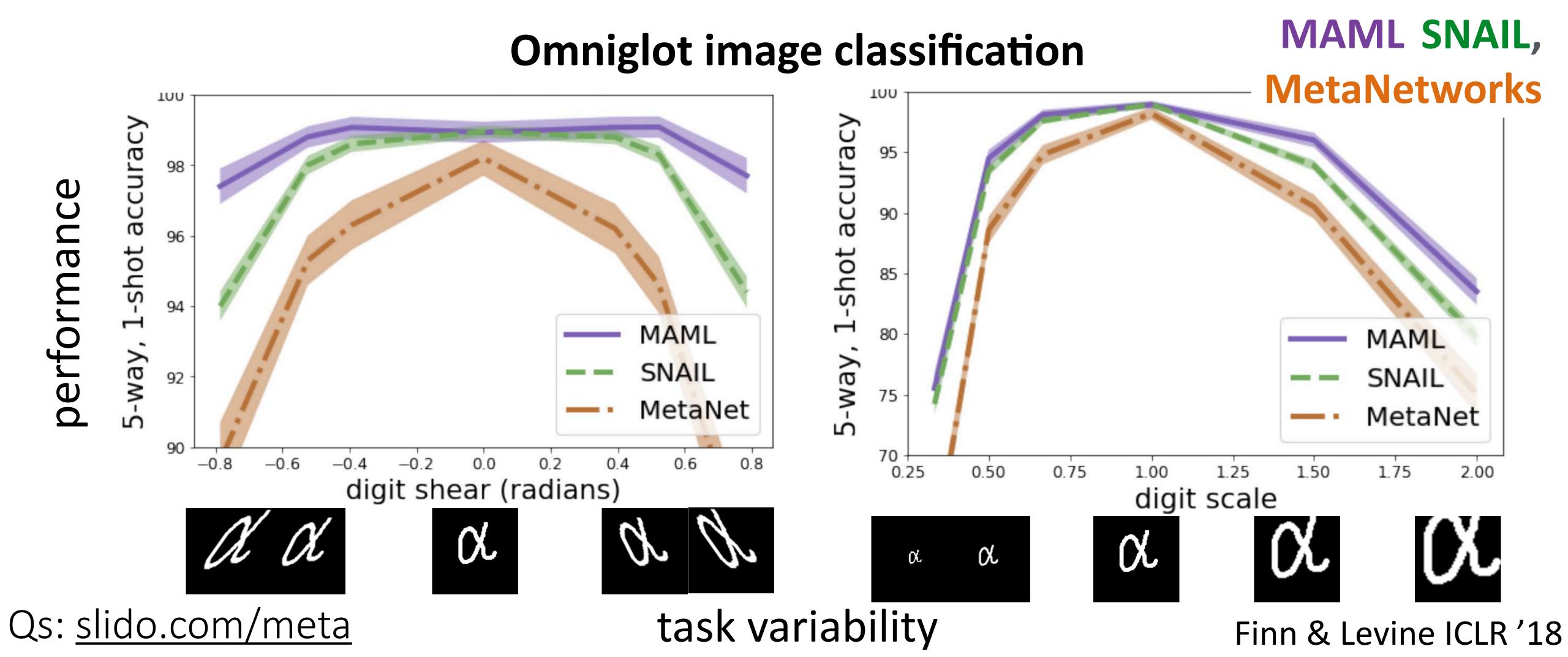
Definition: a consistent meta-learner will converge to a (locally) optimal solution on any new task, regardless of meta-training

Qs: slido.com/meta

Finn. Learning to Learn with Gradients. PhD thesis, 2019.

Empirical Extrapolation?

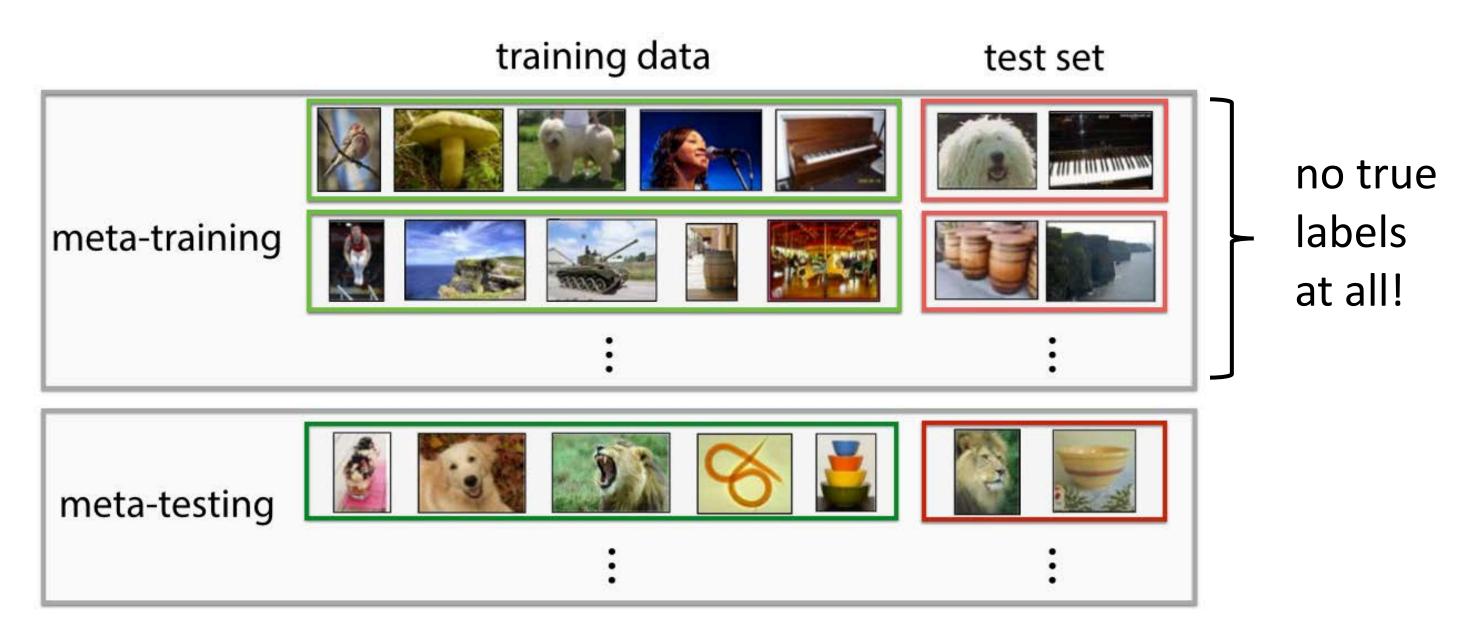
How well can learning procedures generalize to similar, but extrapolated tasks?



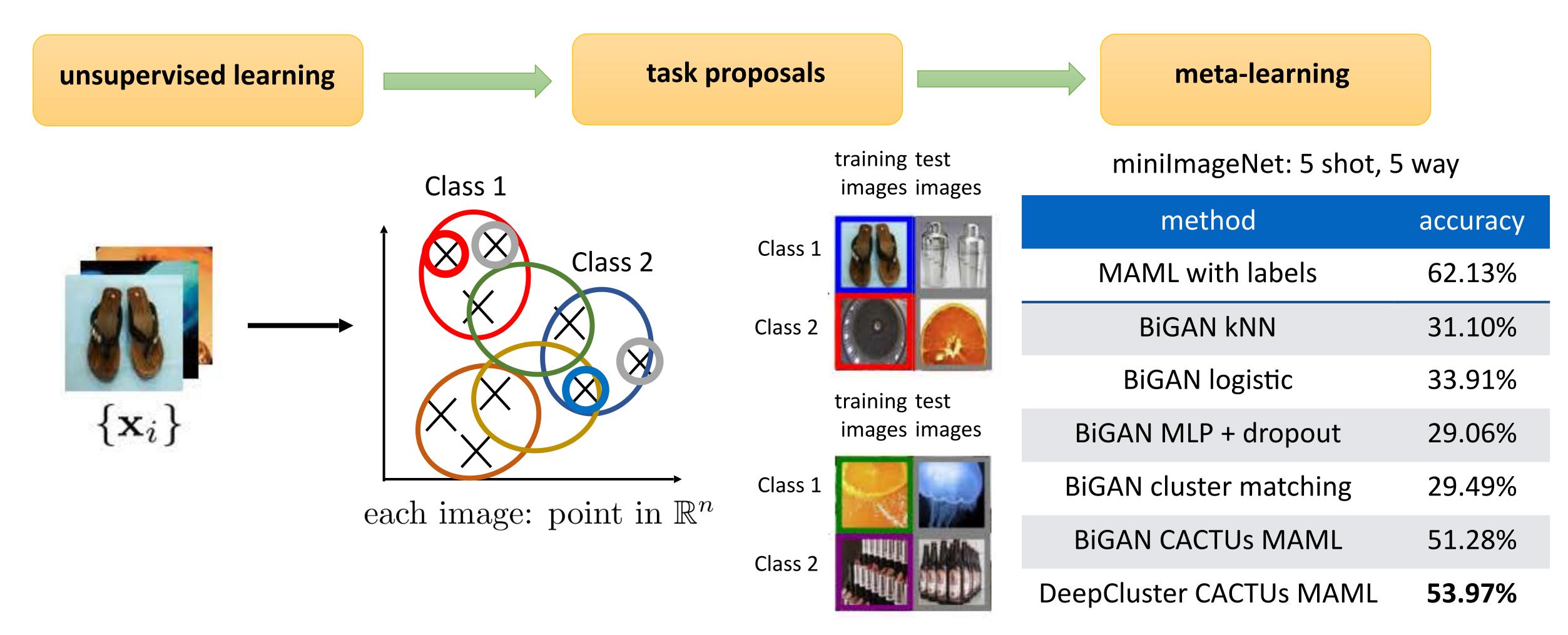
What else can we do?

- When there are too few meta-training tasks, we can meta-overfit
- Specifying task distributions is hard!
- Can we propose new tasks automatically?

Definition: unsupervised meta-learning refers to meta-learning algorithms that learn to solve tasks efficiently, without using hand-specified labels during meta-training



Example: stagewise unsupervised meta-learning

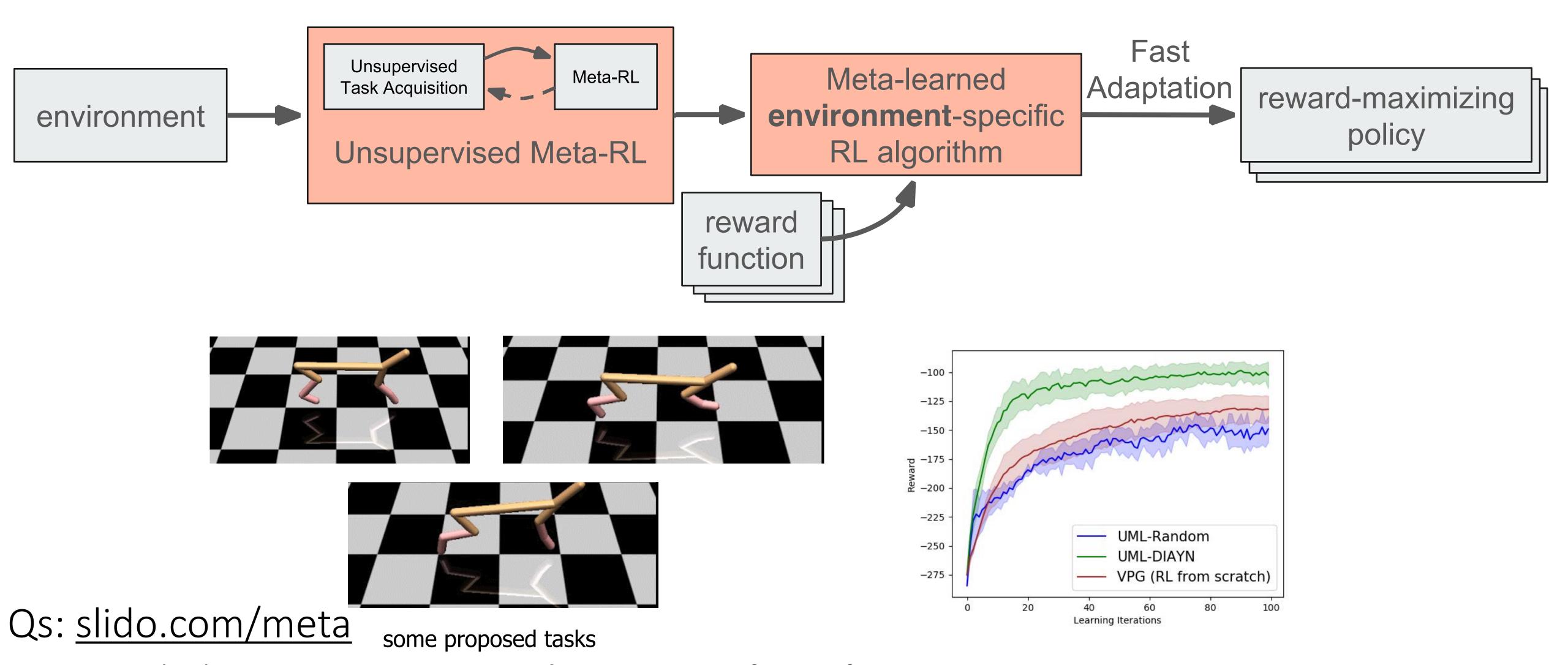


Clustering to Automatically Construct Tasks for Unsupervised Meta-Learning (CACTUs)

Qs: <u>slido.com/meta</u>

Hsu, Levine, Finn. Unsupervised Learning via Meta-Learning. ICLR 2019

Example: unsupervised meta-reinforcement learning



Gupta, Eysenbach, Finn, Levine. Unsupervised Meta-Learning for Reinforcement Learning.

Eysenbach, Gupta, Ibarz, Levine. Diversity is All You Need.

More on unsupervised meta-learning

- Unsupervised meta-RL: Gupta, Eysenbach, Finn, Levine. Unsupervised Meta-Learning for Reinforcement Learning.
- Unsupervised meta-few-shot classification: Hsu, Levine, Finn. Unsupervised Learning via Meta-Learning.
- Unsupervised meta-few-shot classification: Khodadadeh, Boloni, Shah. Unsupervised Meta-Learning for Few-Shot Image and Video Classification.
- Using supervised meta-learning to learn unsupervised learning rules: Metz, Maheswaranathan, Cheung, Sohl-Dickstein. Meta-Learning Update Rules for Unsupervised Representation Learning.
- Using supervised meta-learning to learn semi-supervised learning rules: Ren, Triantafillou, Ravi, Snell, Swersky, Tenenbaum, Larochelle, Zemel. Meta-Learning for Semi-Supervised Few-Shot Classification.

Memorization

Related to meta-overfitting, but subtly different.

Computation graph view: $y^{\mathrm{ts}} = f_{\theta}(\mathcal{D}_{i}^{\mathrm{tr}}, x^{\mathrm{ts}})$

What will happen if the task data isn't

strictly needed to learn the task?

Examples

Meta-training tasks: Cat/dog classifier.

Goal: Learn to quickly recognize a new breed as a cat.

Learn single classifier that doesn't adapt.

Meta-training tasks: Grasping different objects.

Goal: Learn to quickly grasp a new object.

Memorize how to grasp the training objects.

The tasks need to be mutually exclusive.

i.e. not possible to learn single function to learn all tasks

What you want the learner to glean from the data must be not present in x.

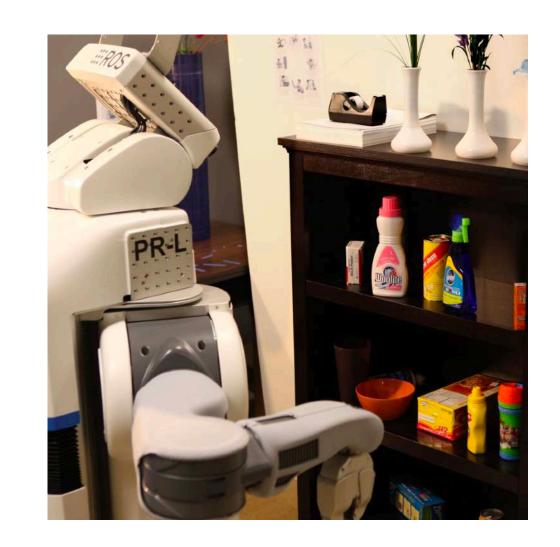
Challenge: can we learn to trade off information from the data

vs. the input based on amount of data

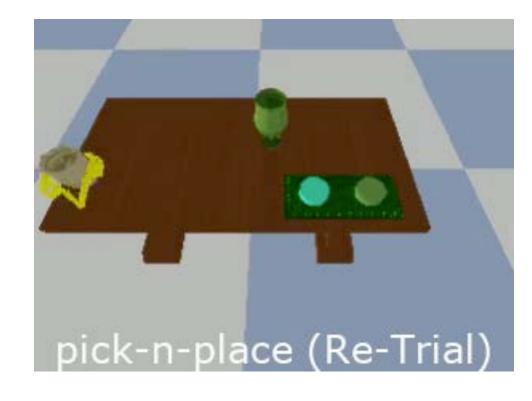
What task information should be in the input vs. data?

So far: The input contains **no** information about the task.

For **broad meta-RL task distributions**, exploration becomes exceedingly challenging.



One option: Provide demonstration (to illustrate the task goal) + trials



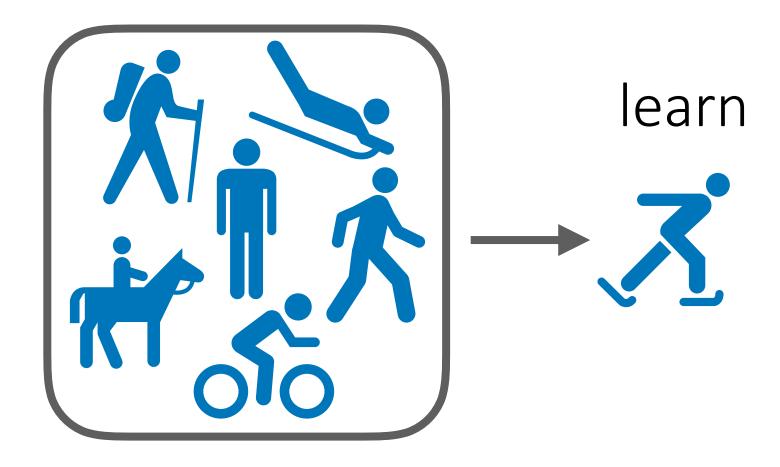
Zhou et al. Watch-Try-Learn: Meta-Learning Behavior from Demonstrations and Rewards, '19

Other options: language instruction?, goal image?, video tutorial?

The Ultimate Goal

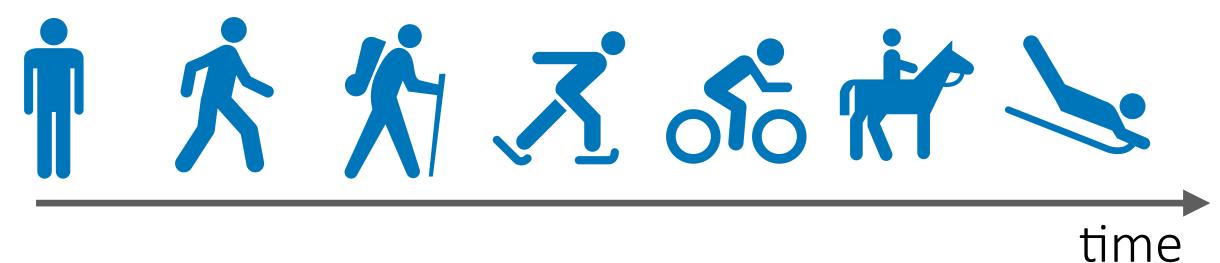
Meta-Learning

Given i.i.d. task distribution, learn a new task efficiently



More realistically:

earn learn learn learn learn learn



slow learning — rapid learning

Initial work: Finn*, Rajeswaran* et al. Online Meta-Learning ICML '19

one step of adaptation

continual learning and adaptation

Outline

- Problem statement
- Meta-learning algorithms
 - Black-box adaptation
 - Optimization-based inference
 - Non-parametric methods
 - Bayesian meta-learning
- Meta-learning applications
 - 5 min break —
- Meta-reinforcement learning
- Challenges & frontiers

Thank you!

Questions?