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The space of safety problems

Specification

Behave according to intentions

Robustness

Withstand perturbations

Assurance

Analyze & monitor activity

Ortega et al. (2018)
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Safety in a nutshell
Where does this 

come from?
(Specification)

How good is our 
approximation?
(Assurance)

What about rare 
cases/adversaries?
(Robustness)
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Outline

Intro
Specification for RL
Assurance
– break –
Specification: Fairness
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Specification
Does the system behave as intended?
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Degenerate solutions and misspecifications

The surprising creativity of digital 
evolution (Lehman et al., 2017)
https://youtu.be/TaXUZfwACVE

https://youtu.be/TaXUZfwACVE
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Degenerate solutions and misspecifications

The surprising creativity of digital 
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Faulty reward functions in the wild 
(Amodei & Clark, 2016)
https://openai.com/blog/faulty-rewar
d-functions/

More examples: tinyurl.com/specification-gaming (H/T Victoria Krakovna)

https://youtu.be/TaXUZfwACVE
https://openai.com/blog/faulty-reward-functions/
https://openai.com/blog/faulty-reward-functions/
http://tinyurl.com/specification-gaming


@janleike

Degenerate solutions and misspecifications

The surprising creativity of digital 
evolution (Lehman et al., 2017)
https://youtu.be/TaXUZfwACVE

Faulty reward functions in the wild 
(Amodei & Clark, 2016)
https://openai.com/blog/faulty-rewar
d-functions/

More examples: tinyurl.com/specification-gaming (H/T Victoria Krakovna)

https://youtu.be/TaXUZfwACVE
https://openai.com/blog/faulty-reward-functions/
https://openai.com/blog/faulty-reward-functions/
http://tinyurl.com/specification-gaming


@janleike

What if we train agents with a human in the loop?
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performancehuman

Potential performance

RL from modeled rewards

TAMER/COACH

Imitation
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Learning rewards from preferences: the Bradley-Terry model

Akrour et al. (MLKDD 2011), Christiano et al. (NeurIPS 2018)
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Reward modeling on Atari

Reaching superhuman performance Outperforming “vanilla” RL

Christiano et al. (NeurIPS 2018)

best
human
score
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Imitation learning + reward modeling

demos

policy

preferences

reward model

RLimitation

Ibarz et al. (NeurIPS 2018)
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Scaling up

Safety via debate
Irving et al. (2018)

What about domains too complex for human feedback?

Iterated amplification
Christiano et al. (2018)

Recursive reward modeling
Leike et al. (2018)
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Reward model exploitation Ibarz et al. (NeurIPS 2018)

1. Freeze successfully trained reward model
2. Train new agent on it
3. Agent finds loophole

Solution: train the reward model online, together with the agent
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A selection of other specification work
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Avoiding unsafe states by blocking actions

Saunders et al. (AAMAS 2018)

4.5h of human oversight
0 unsafe actions in Space Invaders



@janleike

Shutdown problems

> 0 ⇒ agent wants to prolong the episode
           (disable the off-switch)

< 0 ⇒ agent wants to shorten the episode
           (press the off-switch)

Hadfield-Menell et al. (IJCAI 2017)Orseau and Armstrong (UAI, 2016)

Safe interruptibility The off-switch game

Q-learning is safely interruptible, but not SARSA
Solution: treat interruptions as off-policy data

Solution: retain uncertainty over the reward 
function
⇒  agent doesn’t know the sign of the return
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Understanding agent incentives

Everitt et al. (2019)

Causal influence diagrams

Krakovna et al. (2018)

Estimate difference, e.g.
● # steps between states
● # of reachable states
● difference in value

Impact measures

https://arxiv.org/pdf/1902.09980.pdf
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Analyzing, monitoring, and controlling systems during operation.

Assurance
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White-box analysis

Olah et al. (Distill, 2017, 2018)

Saliency maps

Maximizing activation of neurons/layers

Finding the channel that most supports a 
decision
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Black-box analysis: finding rare failures

● Approximate “AVF”
f: initial MDP state ⟼ P[failure]

● Train on a family of related 
agents of varying robustness

● ⇒ Bootstrapping by learning the 
structure of difficult inputs on 
weaker agents

Result: failures found ~1,000x faster

Uesato et al. (2018)
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Verification of neural networks

Katz et al. (CAV 2017)

● Rewrite this as SAT formula with  
linear terms

● Use an SMT-solver to solve the 
formula

● Reluplex: special algorithm for 
branching with ReLUs

● Verified adversarial robustness of 
6-layer MLP with ~13k parameters

ẟ-local robustness at point x0:

 Ehlers (ATVA 2017), Gowal et al. (2018)

Reluplex Interval bound propagation

ImageNet downscaled to 64x64:



Questions?



— 10 min break —



Part II
Specification: Fairness
Silvia Chiappa · ICML 2019



ML systems used in areas that severely affect people lives

○ Financial lending 
○ Hiring
○ Online advertising
○ Criminal risk assessment
○ Child welfare
○ Health care
○ Surveillance



Two examples of problematic systems 

1. Criminal Risk Assessment Tools
Defendants are assigned scores that predict the risk of 
re-committing crimes. These scores inform decisions about 
bail, sentencing, and parole. Current systems have been 
accused of being biased against black people.

2. Face Recognition Systems
Considered for surveillance and self-driving cars. Current 
systems have been reported to perform poorly, especially 
on minorities. 



From public optimism to concern

Attitudes to police technology are 
changing—not only among American 
civilians but among the cops themselves.

Until recently Americans seemed willing 
to let police deploy new technologies in 
the name of public safety. 

But technological scepticism is growing. 
On May 14th San Francisco became the 
first American city to ban its agencies 
from using facial recognition systems. 

The Economist



One fairness definition or one framework?

21 Fairness Definitions and Their 
Politics. Arvind Narayanan. 

ACM Conference on Fairness, 
Accountability, and Transparency 

Tutorial (2018)

Differences/connections between 
fairness definitions are difficult to 

grasp. 

We lack common language/framework.

“Nobody has found a definition which is 
widely agreed as a good definition of 

fairness in the same way we have for, say, 
the security of a random number 

generator.” 
“There are a number of definitions and 
research groups are not on the same 

page when it comes to the definition of 
fairness.”

“The search for one true definition 
is not a fruitful direction, as 

technical considerations cannot 
adjudicate moral debates.”

S. Mitchell, E. Potash, and S. Barocas (2018)
P. Gajane and M. Pechenizkiy (2018)
S. Verma and J. Rubin (2018)

https://arxiv.org/abs/1811.07867
https://arxiv.org/abs/1710.03184
http://fairware.cs.umass.edu/papers/Verma.pdf


Common group-fairness definitions (binary classification setting)

Demographic Parity
Dataset                                      

●                 sensitive attribute
●                 class label
●                 prediction of the class 
●                 features 

The percentage of individuals 
assigned to class 1 should be the 
same for groups A=0 and A=1.

               Males                           Females        



Common group-fairness definitions

Equal False Positive/Negative Rates 
(EFPRs/EFNRs)

Predictive Parity 



The Law

Regulated Domains
Lending, Education, Hiring, Housing (extends to target advertising). 

Protected (Sensitive) Groups
Reflect the fact that in the past there have been unjust practices. 



Discrimination in the Law

Disparate Treatment
Individuals are treated differently because of protected 
characteristics (e.g. race or gender).
[ Equal Protection Clause of the 14th Amendment. ]

Disparate Impact
An apparently neutral policy that adversely affects a protected 
group more than another group.
[ Civil Rights Act, Fair Housing Act, and various state statutes. ]



Statistical test discrimination in human decisions

1. Benchmarking: Compares the rate at which groups are treated favorably.

If white applicants are granted loans more often than minority applicants, 
that may be the result of bias.

2. Outcome Test (Becker (1957, 1993)): Compares the success rate of 
decisions (hit rate). 

Even if minorities are less creditworthy than whites, minorities who are 
granted loans, absent discrimination, should still be found to repay their 
loans at the same rate as whites who are granted loans.



Outcome test

Outcome Tests used to provide evidence 
that a decision making system has an 
unjustified disparate impact.

Example: Police search for contraband 

A finding that searches for a group are 
systematically less productive than 
searches for another group is evidence 
that police apply different thresholds 
when searching. 

Outcome tests of racial disparities in police practices. 
I. Ayres. Justice Research and Policy (2002)

50% 
Threshold

Risk Distribution

https://pdfs.semanticscholar.org/19b3/ad37064fb5d4a32314bb9ba0e613e180f350.pdf?_ga=2.164432888.652120026.1559809566-1008100864.1559809566
https://pdfs.semanticscholar.org/19b3/ad37064fb5d4a32314bb9ba0e613e180f350.pdf?_ga=2.164432888.652120026.1559809566-1008100864.1559809566


Problems with the outcome test

Tests for discrimination that account for the shape of the risk distributions find that 
officers apply a lower standard when searching black individuals. Simoiu et al. (2017)

Police apply lower threshold  in order to discriminate against 
blue drivers. But the outcome test incorrectly suggests no bias.

Police search if there’s greater than 50% chance they’ll find 
contraband. But the outcome test incorrectly suggests bias.  

Defining and Designing Fair Algorithms.
Sam Corbett-Davies and Sharad Goel. ICML Tutorial (2018)



Outcome test from a causal Bayesian network viewpoint

A

ŶC

    Race

Characteristics Search

Nodes represent random variables:

● A = Race
● C = Characteristics 
● Ŷ= Police search

Links express causal influence.



What is the outcome test trying to achieve?

A

ŶC

    Race

Characteristics Search

Unfair

Fa
ir 

Understand whether there is a direct influence 
of A on Ŷ, namely a direct path A → Ŷ, by 
checking whether

where Y represents Contraband.



What is the outcome test trying to achieve?

A

ŶC

    Race

Search

Different 
ThresholdFa

ir 

Characteristics

A

YC

    Race

Contraband

Fa
ir 

Characteristics

Has a direct path been introduced when searching?



Connection to ML Fairness

Assumption in Outcome Test: Y reflects genuine 
contraband. 

This excludes the case of e. g. deliberate intention of 
making a group look guilty by placing contrabands in 
cars. But when learning a ML model from a dataset, 
we might be in this scenario. Or the label Y could 
correspond to Search rather than Contraband.

A

Q

    Race

Qualification Search
or

Contraband

Fa
ir 

Outcome Test: Percentage of those classified 

positive (i.e., searched) who had contraband. 

Formally equivalent of checking for 

Predictive Parity.
If Y contains direct influence 
from A, Predictive Parity 
might not be a meaningful 
fairness goal.

Y
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COMPAS predictive risk instrument

Low risk 
~70% did not reoffend 
for both the black and 
white groups.



COMPAS predictive risk instrument

Medium-high risk
The same percentage of 
individuals did not 
reoffend in both groups. 



COMPAS predictive risk instrument

Did not reoffend 
False Positive Rates 
differ

Black defendants who did not reoffend were 
more often labeled "high risk"



Patterns of unfairness in the data not considered

A

YF

    Race

Feature Re-offend

M

     Feature

Unfair

Fa
ir 

?
Modern policing tactics center around targeting a 
small number of neighborhoods --- often 
disproportionately populated by non-whites. 

We can rephrase this as indicating the presence 
of a direct path A → Y (through unobserved 
neighborhood).

Such tactics also imply an influence of A on Y 
through F containing number of prior arrests.

EFPRs/EFNRs and Predictive Parity require the rate of (dis)agreement between the correct 
and predicted label (e.g. incorrect-classification rates) to be the same for black and white 
defendants, and are therefore not concerned with dependence of Y on A. 



A

YD

 Gender

Department
   Choice

College
Admission

Q

 Qualification

A causal Bayesian networks viewpoint on fairness. 
S. Chiappa and W. S. Isaac (2018)

Patterns of unfairness: college admission example 
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Fair 

Influence of A onY is all fair

Three main scenarios

 Predictive Parity
Equal FPRs/FNRs
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Influence of A onY is all fair Influence of A onY is both fair 
and unfair

Fair 

A

YD

 Gender

Department
   Choice

College
Admission

Q

 Qualification

Unfair
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ir 
Influence of A onY is all unfair

Fair 

Three main scenarios

 Demographic Parity Predictive Parity
Equal FPRs/FNRs



Path-specific fairness

A=a and A=a̅ indicate female and male applicants respectively

Random variable with distribution equal to the conditional 
distribution of Y given A restricted to causal paths, 
with A=a̅ along A → Y and A=a along A → D → Y.

A

YD

 Gender

Department
   Choice

College
Admission

Q

 Qualification

Unfair

Fa
ir

Fair Path-specific Fairness



Accounting for full shape of distribution

Binary classifier outputs a continuous value that represents the probability that individual n belong to class 1,   

. A decision is the taken by thresholding 

General expression including regression 

Demographic Parity Strong Demographic Parity

Strong Path-specific Fairnress

Wasserstein fair classification. 
R. Jiang, A. Pacchiano, T. Stepleton, H. Jiang, and S. 
Chiappa (2019)

regression

classification



Individual fairness

A female applicant should get the 
same decision as a male applicant 
with the same qualification and 
applying to the same department.

Fairness through awareness. C. Dwork, M. Hardt, T. Pitassi, O. 
Reingold, and R. Zemel (2011)

Similar individuals should be treated similarly.

A

YD

 Gender

Department
   Choice

College
Admission

Q

 Qualification

Unfair

Fair 

Fa
ir

https://arxiv.org/abs/1104.3913
https://arxiv.org/abs/1104.3913


Individual fairness

Compute the outcome 
pretending that the female 
applicant is male along the 
direct path A → Y.

Path-specific counterfactual fairness. S. Chiappa, and T. P. Gillam (2018)

https://arxiv.org/abs/1802.08139


Path-specific counterfactual fairness: linear model example

A

D

Y

Q

Counterfactual World

Twin Network

Factual World

As Q is non-descendant of A, and D is descendant 
of A along a fair path, this coincides with

In more complex scenarios we would need to use corrected versions of the features.



How to achieve fairness

1. Post-processing:  Post-process the model outputs.

Doherty et al. (2012), Feldman (2015), Hardt et al. (2016), Kusner et al. (2018), Jiang et al. 
(2019).

2. Pre-processing: Pre-process the data to remove bias, or extract representations 
that do not contain sensitive information during training. 

Kamiran and Calder (2012), Zemel et al. (2013), Feldman et al. (2015), Fish et al. (2015), 
Louizos et al. (2016), Lum and Johndrow (2016), Adler et al. (2016), Edwards and Storkey 
(2016), Beutel et al. (2017), Calmon et al. (2017), Del Barrio et al. (2019).

3. In-processing: Enforce fairness notions by imposing constraints into the 
optimization, or by using an adversary.

Goh et al. (2016), Corbett-Davies et al. (2017), Zafar et al. (2017), Agarwal et al. (2018), 
Cotter et al. (2018), Donini et al. (2018), Komiyama et al. (2018), Narasimhan (2018), Wu et 
al. (2018), Zhang et al. (2018), Jiang et al. (2019).

.

https://papers.ssrn.com/sol3/papers.cfm?abstract_id=1101700
https://scholarship.tricolib.brynmawr.edu/handle/10066/17628
https://arxiv.org/abs/1610.02413
https://arxiv.org/abs/1703.06856
https://link.springer.com/article/10.1007/s10115-011-0463-8
https://www.cs.toronto.edu/~toni/Papers/icml-final.pdf
https://arxiv.org/abs/1412.3756
https://www.fatml.org/schedule/2015/presentation/fair-boosting-case-study-2015
https://arxiv.org/pdf/1511.00830.pdf
https://arxiv.org/pdf/1610.08077.pdf
https://arxiv.org/pdf/1602.07043.pdf
https://arxiv.org/abs/1511.05897
https://arxiv.org/abs/1511.05897
https://arxiv.org/abs/1707.00075
https://papers.nips.cc/paper/6988-optimized-pre-processing-for-discrimination-prevention.pdf
https://hal.archives-ouvertes.fr/hal-01806912/document
https://arxiv.org/abs/1606.07558
https://arxiv.org/abs/1701.08230
https://arxiv.org/abs/1507.05259
https://arxiv.org/abs/1803.02453
https://arxiv.org/abs/1804.06500
https://arxiv.org/abs/1802.08626
http://proceedings.mlr.press/v80/komiyama18a.html
http://proceedings.mlr.press/v84/narasimhan18a.html
https://arxiv.org/abs/1711.05144
https://arxiv.org/abs/1711.05144
https://arxiv.org/abs/1801.07593


Start thinking about a structure for evaluation

Safety: Initial testing on human subjects. Digital testing: Standard test set. 

Proof-of-concept: Estimating efficacy and 
optimal use on selected subjects.

Laboratory testing: Comparison with 
humans, user testing.

Randomized controlled-trials: Comparison 
against existing treatment in clinical setting.

Field testing: Impact when imported in 
society.

Post-marketing surveillance: Long-term 
side effects. 

Routine use: Monitoring safety patterns 
over time.

Pharmaceuticals Machine Learning Systems 

Stead et al. Journal of the American Medical 
Informatics Association (1994)

Making Algorithms Trustworthy. 
D. Spiegelhalter. NeurIPS (2018).



Questions?


