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Deploying ML in the real world has real-world consequences
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The space of safety problems Ortega et al. (2018)

Specification Robustness Assurance

Behave according to intentions Withstand perturbations Analyze & monitor activity

I 11
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Safety in a nutshell

arg max
7

AT~

Z r(s,a)
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Safety in a nutshell

arg max
7

AT ~oTT

What about rare
cases/adversaries?
(Robustness)

Where does this
come from?
(Specification)
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Safety in a nutshell

How good is our
approximation?
(Assurance)

arg max
7

AT ~oTT

What about rare
cases/adversaries?
(Robustness)

Where does this
come from?
(Specification)

Z r(s,a)

(s,0)er
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Outline

Intro

Specification for RL
Assurance

— break -
Specification: Fairness
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Specification

Does the system behave as intended?
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Degenerate solutions and misspecifications

The surprising creativity of digital
evolution (Lehman et al., 2017)
https://youtu.be/TaXUZfwACVE

Q DeepMind @janleike


https://youtu.be/TaXUZfwACVE

Degenerate solutions and misspecifications

The surprising creativity of digital Faulty reward functions in the wild
evolution (Lehman et al., 2017) (Amodei & Clark, 2016)

More examples: tinyurl.com/specification-gaming (H/T Victoria Krakovna)

Q DeepMind @janleike
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Degenerate solutions and misspecifications

ons in the wild

The surprising cre
-

evolution (Lehma

More exa

YOU GET WHAT YOU OPTIMIZE FOR
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What if we train agents with a human in the loop?
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Algorithms for training agents from human data
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MY AGENT ISN'T

Potential performance

Imitation

TAMER/COACH

RL from modeled rewards

} >

performance

human
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Specifying behavior
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Reward modeling
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Reward modeling
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Learning rewards from preferences: the Bradley-Terry model

A exXp (Z(s,a)e'rl 72(87 a))
exp (Z(s,a)eTl 72(57 a’)) + exXp (Z(s,a)eTQ 7/;(87 CL))

Akrour et al. (MLKDD 2011), Christiano et al. (NeurlPS 2018)
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Reward modeling on Atari

Reaching superhuman performance Outperforming “vanilla” RL
30 —pong 1000 —enduro
best 20 800 |- _
human - -
score I — R
— 10k synthetic labels 600 |- ]
0 — 5.6k synthetic labels
3.3k synthetic labels 400 - i
-10 — 5.5k human labels
_20 200 B N
_30 Il 1 Il 1

le7 timestep le7

Christiano et al. (NeurlPS 2018)
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Imitation learning + reward modeling

imitation > policy

T

reward model

T

» preferences

demos -

Ibarz et al. (NeurlPS 2018)
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Scaling up

What about domains too complex for human feedback?

@
7|
N
o
QUESTION 4] Agent u @ o
A4
E] T, o.o
A\

Environment

Safety via debate Iterated amplification Recursive reward modeling
Irving et al. (2018) Christiano et al. (2018) Leike et al. (2018)
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Reward model exploitation Ibarz et al. (NeurlPS 2018)

1. Freeze successfully trained reward model
2. Train new agent on it
3. Agent finds loophole

Hero

——a".

POMEF I—

PN

Mean episode return

s SIoON

Solution: train the reward model online, together with the agent
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Avoiding unsafe states by blocking actions

* .

- >L Environment M } Bl Here s the .ag'ent
Figure 1: HIRL scheme. At (1) the hu- ear'Y in training.
man overseer (or Blocker imitating the The blue bar here
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@ o , tions a*. At (2) the overseer can deliver a human blocks
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Figure 3: Cumulative Catastrophes over time (mean and standard error). No Oversight agent gets no
human intervention at all; it shows that our objective of preventing catastrophes is not trivial.

Cumulative Catastrophes
Cumulative Catastrophes
Cumulative Catastrophes

Saunders et al. (AAMAS 2018)
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Shutdown problems

E, - Z r(s,a)|>0 = agent wants to prolong the episode
(sa)er | (disable the off-switch)

E r Z r(s,a)|< 0 = agent wants to shorten the episode

| (s,a)er | (press the off-switch)
Safe interruptibility The off-switch game
Q-learning is safely interruptible, but not SARSA Solution: retain uncertainty over the reward
Solution: treat interruptions as off-policy data function
= agent doesn't know the sign of the return
Orseau and Armstrong (UAI, 2016) Hadfield-Menell et al. (IJCAI 2017)
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Understanding agent incentives

Causal influence diagrams Impact measures S0
\\
agent polic N s ;
, . B POUCY ', inaction
E Physical activity ¢ Fitness ») \\
‘ S t—1 \\
i . . . \
; Caloric intake [ e amimesiees < \
e .77 intervention incentive St S(t—l) 3(0)
[Estimation formula]—‘[EStimated walklng distance] P for better information t t

Main result 2 (Intervention incentive criterion): In a single-action v

influence diagram, there is an intervention incentive on a non-action node X Estimate diffel‘ence, e.g.

if and only if X has a descendant utility node after the graph has been trimmed ° # steps between states
of information links coming from observations failing the observation incentive

oviterion. iThesrem 1), e #of reachable states

e difference in value

Everitt et al. (2019) Krakovna et al. (2018)
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Assurance

Analyzing, monitoring, and controlling systems during operation.

3RAC
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White-box analysis

DREAM OF NEUROTIC SHEEP?
net evidence 1.63
for "Labrador retriever" 1.22
for "tiger cat" -0.40

Finding the channel that most supports a
decision

Maximizing activation of neurons/layers Olah et al. (Distill, 2017, 2018)
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Black-box analysis: finding rare failures

e Approximate “AVF”
f: initial MDP state — P[failure]
e Train on a family of related

agents of varying robustness e A
. . Cumulative 0
e = Bootstrapping by learning the
. . of episodes until first failure (Humanoid)
structure of difficult inputs on oo * Ogfgg s U e Hemane

250000 EEm AVF-guided search

weaker agents

200000

150000

Result: failures found ~1,000x faster

# of episodes

100000

50000

294

' Evaluation Strategy UesatO et al. (201 8)
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Verification of neural networks

Reluplex Interval bound propagation

[I-local robustness at point x:

VE. ||¥—x%|| <8 = N(E) =N(x)

e Rewrite this as SAT formula with
linear terms

e Use an SMT-solver to solve the
formula

e Reluplex: special algorithm for
branching with ReLUs

ImageNet downscaled to 64x64:

e Verified adversarial robustness of P Method Test error PGD  Verified
6-layer MLP with ~13k parameters /55 BNA‘;‘(;’;;"‘;‘t g e e 3
IBP 84.04% 90.88% 93.87 %

Katz et al. (CAV 2017) Ehlers (ATVA 2017), Gowal et al. (2018)

Q DeepMind @janleike



Questions?
~'C




— 10 min break —




Part |
Specification: Fairness
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ML systems used in areas that severely affect people lives

Financial lending

Hiring

Online advertising
Criminal risk assessment
Child welfare

Health care

Surveillance

O O O O O O O
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Two examples of problematic systems

Criminal Risk Assessment Tools

Defendants are assigned scores that predict the risk of
re-committing crimes. These scores inform decisions about
bail, sentencing, and parole. Current systems have been
accused of being biased against black people.

Face Recognition Systems

Considered for surveillance and self-driving cars. Current
systems have been reported to perform poorly, especially
on minorities.

{’ DeepMind



From public optimism to concern

America is turning against facial-

recognition software

But that isn’t the most promising use of technology

The Economist

Dennis Vernooij

Attitudes to police technology are
changing—not only among American
civilians but among the cops themselves.

Until recently Americans seemed willing
to let police deploy new technologies in
the name of public safety.

But technological scepticism is growing.
On May 14th San Francisco became the
first American city to ban its agencies
from using facial recognition systems.

Q DeepMind



One fairness definition or one framework?

21 Fairness Definitions and Their Nobody has found a definition which is
Politics. Arvind Narayanan. widely agreed as a qood definition of
ACM Conference on Fairness, Fairnecs in the came way we have for, cay,

Accountability, and Transparency the cecurity of a random nomber

Tutorial (2018) ”

generator.
S. Mitchell, E. Potash, and S. Barocas (2018) ‘There are a number of definitione and
P. Gajane and M. Pechenizkiy (2018) research groups are not on the came
S. Verma and J. Rubin (2018) page when it comes to the definition of
Differences/connections between Fairnecs.”
fairness definitions are difficult to “The search for one true definition
grasp. i¢ not a fraitful divection, ae

technical conciderations cannot
We lack common language/framework.

adjudicate moral debates. 7

Q DeepMind


https://arxiv.org/abs/1811.07867
https://arxiv.org/abs/1710.03184
http://fairware.cs.umass.edu/papers/Verma.pdf

Common group-fairness definitions (binary classification setting)

Demographic Parity

The percentage of individuals
assigned to class 1should be the
same for groups A=0 and A=1.

Q000000000 Q000
Q000000000 -~ Q000
0000000000 Y=-10000
Q000000000 Q000
0000000000}?:0 000
0000 O0O0COOOO 0000

Males Females

Dataset

e a" € {0,1} sensitive attribute

e y" €{0,1} class label

e y" € {0,1} prediction of the class
e x" c R?Y  features

p(Y =1A=0)=p(Y =14A=1)

Q DeepMind



Common group-fairness definitions

Equal False Positive/Negative Rates Predictive Parity
(EFPRS/EFNRS)
p(Y =1Y =0,A=0)=p(Y =1|Y =0,A = 1) p(Y =1[Y =1,A=0)=p(Y =1|]Y = 1,4 =1)
p(Y =0Y=1,A=0)=p(Y =0]Y =1,A=1) p(Y =0y =0,A=0)=p(Y =0|]Y =0,4=1)

Y LAy Y LAY

Q DeepMind



The Law

Regulated Domains
Lending, Education, Hiring, Housing (extends to target advertising).

Protected (Sensitive) Groups
Reflect the fact that in the past there have been unjust practices.

{’ DeepMind



Discrimination in the Law

Disparate Treatment

Individuals are treated differently because of protected
characteristics (e.g. race or gender).

[ Equal Protection Clause of the 14th Amendment. |

Disparate Impact

An apparently neutral policy that adversely affects a protected
group more than another group.

[ Civil Rights Act, Fair Housing Act, and various state statutes. |

Q DeepMind



Statistical test discrimination in human decisions

1.

Benchmarking: Compares the rate at which groups are treated favorably.

If white applicants are granted loans more often than minority applicants,
that may be the result of bias.

Outcome Test (Becker (1957, 1993)): Compares the success rate of
decisions (hit rate).

Even if minorities are less creditworthy than whites, minorities who are
granted loans, absent discrimination, should still be found to repay their
loans at the same rate as whites who are granted loans.

{’ DeepMind



OUtCOme teSt Outcome tests of racial disparities in police practices.
I. Ayres. Justice Research and Policy (2002)

Outcome Tests used to provide evidence
that a decision making system has an

unjustified disparate impact. Risk Distribution

50%
Threshold

Example: Police search for contraband

A finding that searches for a group are
systematically less productive than
searches for another group is evidence

\

OA

that police apply different thresholds
when searching.

Likelihood of possessing contraband

Q DeepMind


https://pdfs.semanticscholar.org/19b3/ad37064fb5d4a32314bb9ba0e613e180f350.pdf?_ga=2.164432888.652120026.1559809566-1008100864.1559809566
https://pdfs.semanticscholar.org/19b3/ad37064fb5d4a32314bb9ba0e613e180f350.pdf?_ga=2.164432888.652120026.1559809566-1008100864.1559809566

Problems with the outcome test  Dpefining and Designing Fair Algorithms.

Sam Corbett-Davies and Sharad Goel. ICML Tutorial (2018)

50%

D
Ul

R

< F > -« ! >
0 55%T 60% 1 0 55%155% 1
Police search if there’s greater than 50% chance they’ll find Police apply lower threshold in order to discriminate against
contraband. But the outcome test incorrectly suggests bias. blue drivers. But the outcome test incorrectly suggests no bias.

Tests for discrimination that account for the shape of the risk distributions find that
officers apply a lower standard when searching black individuals. Simoiu et al. (2017)

Q DeepMind



Outcome test from a causal Bayesian network viewpoint

Race

‘ Nodes represent random variables:

e A=Race
e C =Characteristics
e Y= Policesearch

@ @ Links express causal influence.

Characteristics Search

Q DeepMind



What is the outcome test trying to achieve?

Race

Understand whether there is a direct influence
of AonY, namely adirect pathA—Y, by
checking whether

p(Y =1V =1,A=0)=p(Y =1]Y =1,A=1)

where Y represents Contraband.

Characteristics Search

Q DeepMind



What is the outcome test trying to achieve?

Has a direct path been introduced when searching?

Race Race

Characteristics Contraband Characteristics Search

Q DeepMind



Connection to ML Fairness

Outcome Test: Percentage of those classified - A
positive (i.e., searched) who had contraband.
Formally equivalent of checking for

Predictive Parity. Race

If Y contains direct influence
from A, Predictive Parity
might not be a meaningful
fairness goal.

Assumption in Outcome Test: Y reflects genuine
contraband.

making a group look guilty by placing contrabands in
cars. But when learning a ML model from a dataset,
we might be in this scenario. Or the label Y could
correspond to Search rather than Contraband.

This excludes the case of e. g. deliberate intention of i
o

Qualification Search
or
Contraband

Q) DeepMind



COMPAS predictive risk instrument

Machine Bias

There's software used across the country to predict future criminals. And it's biased against blacks.

by Julia Angwin, Jeff Larson, Surya Mattu and Lauren Kirchner, ProPublica
May 23, 2016

{’ DeepMind



COMPAS predictive risk instrument

A computer program used for bail and sentencing
decisions was labeled biased against blacks. It’s

actually not that clear.

The %Uagﬂmmgmn Post

Democracy Dies

By Sam Corbett-Davies, Emma Pierson, Avi Feller and Sharad Goel

Q DeepMind



COMPAS predictive risk instrument

Black White

2,000

(2]
= 1,500 -
©
o
o
—
% - Reoffended
© 1,000-
o . Did not reoffend Y = ()
o)
el
=
= 500 -
0 -

Low Medium/High Low Medium/High
- Risk category
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COMPAS predictive risk instrument

| Black White
2,000 Low risk
~70% did not reoffend
» for both the black and
€ 1,500 - .
ks, white groups.
=
Q
§ 1,000 I Reoffended
o . Did not reoffend
@
Q0
5
3 500-
0-_ L]
Low Medium/High Low Medium/High
= Risk category
Y =0

c DeepMind



COMPAS predictive risk instrument

Black White
2,000 Medium-high risk
The same percentage of

8 o individuals did not
e Y 1 .
§ reoffend in both groups.
K
3 1.000- I Reoffended Y I Alff
S . Did not reoffend
o
Q
£
= 500 -

Low ___Medium/Hiah__| Low Medium/High
Risk category

c DeepMind



COMPAS predictive risk instrument

Black White

2,000

-—
(o))
o
o
1

1,000 -

Number of defendants

500

Low Medium/High Low Medium/High
Risk category

Black defendants who did not reoffend were
more often labeled "high risk”

Reoffended

Did not reoffend

L

Did not reoffend
False Positive Rates
differ

Y HAY

c DeepMind



Patterns of unfairness in the data not considered

Race Feature . : :
Modern policing tactics center around targeting a

small number of neighborhoods --- often
disproportionately populated by non-whites.

We can rephrase this as indicating the presence
of a direct path A -» Y (through unobserved
neighborhood).

@ Such tactics also imply an influence of Aon Y
through F containing number of prior arrests.

Feature Re-offend

EFPRs/EFNRs and Predictive Parity require the rate of (dis)agreement between the correct
and predicted label (e.g. incorrect-classification rates) to be the same for black and white
defendants, and are therefore not concerned with dependence of Y on A.

Q DeepMind



Patterns of unfairness: college admission example

A causal Bayesian networks viewpoint on fairness.
S. Chiappa and W. S. Isaac (2018)

Gender Qualification

Department College
Choice Admission

Q DeepMind



Three main scenarios

Gender Qualification

Fair ‘

Department College
Choice Admission

Fair
O

Influence of A onY is all fair

Predictive Parity
Equal FPRs/FNRs

Q DeepMind



Three main scenarios

Gender Qualification Gender Qualification

Fair Fair
> D >

Fair
O

Department College Department College
Choice Admission Choice Admission

Influence of A onY is all fair Influence of A onY is all unfair
Predictive Parity Demographic Parity

Equal FPRs/FNRs

Q DeepMind



Three main scenarios

Qualification

Fair ‘

College
Admission

Gender

Fair
O

Department
Choice

Influence of A onY is all fair

Predictive Parity
Equal FPRs/FNRs

Gender Qualification

Fair
D o

Department College
Choice Admission

Influence of A onY is all unfair

Demographic Parity

Gender Qualification

Fair ‘

Department College
Choice Admission

Influence of A onY is both fair
and unfair

?

Q DeepMind



Path-specific fairness

A=a and A=a indicate female and male applicants respectively

Random variable with distribution equal to the conditional
Ya(Da)  distribution of Y given A restricted to causal paths,
with A=a along A — Y and A=a alongA — D — .

) Path-specific Fairness
alPg) p(?a(Da) =1) :p(ff'a =1}

Gender

Qualification

Fair
©—©@

Department
Choice

Fair
- Y

College
Admission

Q DeepMind



. . o . W tein fair classification.

Accounting for full shape of distribution R jing A Paceniano. T Stepleton, H. Jiang, and's.
Chiappa (2019)

Binary classifier outputs a continuous value that represents the probability that individual n belong to class 1,

s" =p(Y =1|A = a", X = z™). Adecision is the taken by thresholding 4" = Lgn~,

o : : n " = s™ regression
General expression including regression s = ]Ep(ymzan’xzxn) [Y] . o
9" = lsn>r classification

Demographic Parity Strong Demographic Parity
Epvia=a) Y] = Epyaza)lY] p(Sla) = p(S|a)

g @ d e

Strong Path-specific Fairnress

p(S&(Da)) — p(Sa)

Q) DeepMind



Individual fairness

Similar individuals should be treated similarly.

Fairness through awareness. C. Dwork, M. Hardt, T. Pitassi, O.
Reingold, and R. Zemel (2011)

A female applicant should get the
same decision as a male applicant
with the same qualification and

applying to the same department.

Gender Qualification
¢
L
Fair
D Y
Department College
Choice Admission

Q DeepMind


https://arxiv.org/abs/1104.3913
https://arxiv.org/abs/1104.3913

Individual fairness Path-specific counterfactual fairness. S. Chiappa, and T. P. Gillam (2018)

Factual World Counterfactual World

Compute the outcome
pretending that the female

applicant is male along the

direct path A- V.
E Candidate E Candidate
Profile Profile

Q DeepMind


https://arxiv.org/abs/1802.08139

Path-specific counterfactual fairness: linear model example

A ~ Bern(w), Q = 07 + ¢,
D =8% 4-0°A 4y,
Y=0"4+0YA+0Q+0;D + ¢y,

Twin Network

4_
D
aw

]Ep(Ya (Ds)|A=a,Q=q™,D=d"™) [Y&(Da)]

As Q is non-descendant of A, and D is descendant
of A along a fair path, this coincides with

e
D
Qe

olfolc
V¢

E o= g pei s [IY°
p(Y|A=a,Q=q",D=d )[ ] Factual World Counterfactual World

In more complex scenarios we would need to use corrected versions of the features.

Q DeepMind



How to achieve fairness

1. Post-processing: Post-process the model outputs.

Doherty et al. (2012), Feldman (2015), Hardt et al. (2016), Kusner et al. (2018), Jiang et al.
(2019).

2. Pre-processing: Pre-process the data to remove bias, or extract representations
that do not contain sensitive information during training.

Kamiran and Calder (2012), Zemel et al. (2013), Feldman et al. (2015), Fish et al. (2015),
Louizos et al. (2016), Lum and Johndrow (2016), Adler et al. (2016), Edwards and Storkey
(2016), Beutel et al. (2017), Calmon et al. (2017), Del Barrio et al. (2019).

3. In-processing: Enforce fairness notions by imposing constraints into the
optimization, or by using an adversary.

Goh et al. (2016), Corbett-Davies et al. (2017), Zafar et al. (2017), Agarwal et al. (2018),
Cotter et al. (2018), Donini et al. (2018), Komiyama et al. (2018), Narasimhan (2018), Wu et
al. (2018), Zhang et al. (2018), Jiang et al. (2019).
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Start thinking about a structure for evaluation

Pharmaceuticals

Safety: Initial testing on human subjects.

Proof-of-concept: Estimating efficacy and
optimal use on selected subjects.

Randomized controlled-trials: Comparison

against existing treatment in clinical setting.

Post-marketing surveillance: Long-term
side effects.

Making Algorithms Trustworthy.
D. Spiegelhalter. NeurIPS (2018).

Machine Learning Systems

Digital testing: Standard test set.

Laboratory testing: Comparison with
humans, user testing.

Field testing: Impact when imported in
society.

Routine use: Monitoring safety patterns

over time.

Stead et al. Journal of the American Medical
Informatics Association (1994)

Q) DeepMind
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