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What to expect

We will...

Provide an overview of what PAC-Bayes is

Illustrate its flexibility and relevance to tackle modern machine
learning tasks, and rethink generalization

Cover main existing results and key ideas, and briefly sketch some
proofs

We won’t...

Cover all of Statistical Learning Theory: see the NeurIPS 2018
tutorial ”Statistical Learning Theory: A Hitchhiker’s guide”
(Shawe-Taylor and Rivasplata)

Provide an encyclopaedic coverage of the PAC-Bayes literature
(apologies!)
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https://www.youtube.com/watch?v=m8PLzDmW-TY


In a nutshell

PAC-Bayes is a generic framework to efficiently rethink generalization for
numerous machine learning algorithms. It leverages the flexibility of

Bayesian learning and allows to derive new learning algorithms.
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The plan

1 Elements of Statistical Learning

2 The PAC-Bayesian Theory

3 State-of-the-art PAC-Bayes results: a case study
Localized PAC-Bayes: data- or distribution-dependent priors
Stability and PAC-Bayes
PAC-Bayes analysis of deep neural networks
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Error distribution
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Learning is to be able to generalize

[Figure from Wikipedia]

From examples, what can a system
learn about the underlying
phenomenon?

Memorizing the already seen data is
usually bad −→ overfitting

Generalization is the ability to
’perform’ well on unseen data.
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Statistical Learning Theory is about high confidence
For a fixed algorithm, function class and sample size, generating random
samples −→ distribution of test errors

Focusing on the mean of the error distribution?

. can be misleading: learner only has one sample

Statistical Learning Theory: tail of the distribution

. finding bounds which hold with high probability

over random samples of size m

Compare to a statistical test – at 99% confidence level

. chances of the conclusion not being true are less than 1%

PAC: probably approximately correct (Valiant, 1984)
Use a ‘confidence parameter’ δ: Pm[large error] 6 δ
δ is the probability of being misled by the training set

Hence high confidence: Pm[approximately correct] > 1 − δ
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Mathematical formalization

Learning algorithm A : Zm → H

• Z = X× Y

X = set of inputs
Y = set of outputs (e.g.
labels)

• H = hypothesis class
= set of predictors

(e.g. classifiers)
functions X→ Y

Training set (aka sample): Sm = ((X1,Y1), . . . , (Xm,Ym))
a finite sequence of input-output examples.
Classical assumptions:
• A data-generating distribution P over Z.
• Learner doesn’t know P, only sees the training set.

• The training set examples are i.i.d. from P: Sm ∼ Pm

. these can be relaxed (mostly beyond the scope of this tutorial)
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What to achieve from the sample?

Use the available sample to:

1 learn a predictor

2 certify the predictor’s performance

Learning a predictor:

• algorithm driven by some learning principle

• informed by prior knowledge resulting in inductive bias

Certifying performance:

• what happens beyond the training set

• generalization bounds

Actually these two goals interact with each other!
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Risk (aka error) measures
A loss function `(h(X ),Y ) is used to measure the discrepancy between
a predicted output h(X ) and the true output Y .

Empirical risk: Rin(h) = 1
m

∑m
i=1 `(h(Xi),Yi)

(in-sample)

Theoretical risk: Rout(h) = E
[
`(h(X ),Y )

]
(out-of-sample)

Examples:

• `(h(X ),Y ) = 1[h(X ) 6= Y ] : 0-1 loss (classification)

• `(h(X ),Y ) = (Y − h(X ))2 : square loss (regression)

• `(h(X ),Y ) = (1 − Yh(X ))+ : hinge loss

• `(h(X ), 1) = − log(h(X )) : log loss (density estimation)
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Generalization

If predictor h does well on the in-sample (X ,Y ) pairs...
...will it still do well on out-of-sample pairs?

Generalization gap: ∆(h) = Rout(h) − Rin(h)

Upper bounds: w.h.p. ∆(h) 6 ε(m, δ)

I Rout(h) 6 Rin(h) + ε(m, δ)

Lower bounds: w.h.p. ∆(h) > ε̃(m, δ)

Flavours:
distribution-free

algorithm-free

distribution-dependent

algorithm-dependent
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Why you should care about generalization bounds

Generalization bounds are a safety check: give a theoretical guarantee
on the performance of a learning algorithm on any unseen data.

Generalization bounds:

may be computed with the training sample only, do not depend on
any test sample

provide a computable control on the error on any unseen data with
prespecified confidence

explain why specific learning algorithms actually work

and even lead to designing new algorithm which scale to more
complex settings
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Building block: one single hypothesis
For one fixed (non data-dependent) h:

E[Rin(h)] = E
[

1
m

∑m
i=1 `(h(Xi),Yi)

]
= Rout(h)

I Pm[∆(h) > ε] = Pm
[
E[Rin(h)] − Rin(h) > ε

]
deviation ineq.

I `(h(Xi),Yi) are independent r.v.’s

I If 0 6 `(h(X ),Y ) 6 1, using Hoeffding’s inequality:

Pm[∆(h) > ε] 6 exp
{
−2mε2} = δ

I Given δ ∈ (0, 1), equate RHS to δ, solve equation for ε, get

Pm
[
∆(h) >

√
(1/2m) log(1/δ)

]
6 δ

I with probability > 1 − δ, Rout(h) 6 Rin(h) +
√

1
2m log

( 1
δ

)
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Finite function class

Algorithm A : Zm → H Function class H with |H| <∞
Aim for a uniform bound: Pm

[
∀f ∈ H, ∆(f ) 6 ε

]
> 1 − δ

Basic tool: Pm(E1 or E2 or · · · ) 6 Pm(E1) + Pm(E2) + · · ·
known as the union bound (aka countable sub-additivity)

Pm
[
∃f ∈ H, ∆(f ) > ε

]
6
∑

f∈H Pm
[
∆(f ) > ε

]
6 |H| exp

{
−2mε2} = δ

w.p. > 1 − δ, ∀h ∈ H, Rout(h) 6 Rin(h) +
√

1
2m log

(
|H|
δ

)
This is a worst-case approach, as it considers uniformly all hypotheses.
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Towards non-uniform learnability
A route to improve this is to consider data-dependent hypotheses hi ,
associated with prior distribution P = (pi)i (structural risk minimization):

w.p. > 1 − δ, ∀hi ∈ H, Rout(hi) 6 Rin(hi) +

√
1

2m log
(

1
piδ

)
Note that we can also write

w.p. > 1 − δ, ∀hi ∈ H,

Rout(hi) 6 Rin(hi) +
√

1
2m

(
KL(Dirac(hi)‖P) + log

( 1
δ

))
First attempt to introduce hypothesis-dependence

(i.e. complexity depends on the chosen function)

This leads to a bound-minimizing algorithm:

return argmin
hi∈H

{
Rin(hi) +

√
1

2m
log

(
1

piδ

)}
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Uncountably infinite function class?
Algorithm A : Zm → H Function class H with |H| > |N|

Vapnik & Chervonenkis dimension: for H with d = VC(H) finite, for
any m, for any δ ∈ (0, 1),

w.p. > 1 − δ, ∀h ∈ H, ∆(h) 6
√

8d
m log

(2em
d

)
+ 8

m log
( 4
δ

)
The bound holds for all functions in the class (uniform over H) and
for all distributions (uniform over P)

Rademacher complexity (measures how well a function can align
with randomly perturbed labels – can be used to take advantage of
margin assumptions)

These approaches are suited to analyse the performance of
individual functions, and take some account of correlations
−→ Extension: PAC-Bayes allows to consider distributions over
hypotheses.
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The PAC-Bayes framework

Before data, fix a distribution P ∈ M1(H) . ‘prior’

Based on data, learn a distribution Q ∈ M1(H) . ‘posterior’
Predictions:
• draw h ∼ Q and predict with the chosen h.
• each prediction with a fresh random draw.

The risk measures Rin(h) and Rout(h) are extended by averaging:

Rin(Q) ≡
∫
H Rin(h) dQ(h) Rout(Q) ≡

∫
H Rout(h) dQ(h)

KL(Q‖P) = E
h∼Q

ln Q(h)
P(h) is the Kullback-Leibler divergence.

Recall the bound for data-dependent hypotheses hi associated with prior
weights pi :
w.p. > 1 − δ, ∀hi ∈ H,

Rout(hi) 6 Rin(hi) +
√

1
2m

(
KL(Dirac(hi)‖P) + log

( 1
δ

))
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PAC-Bayes aka Generalized Bayes

”Prior”: exploration mechanism of H
”Posterior” is the twisted prior after confronting with data
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PAC-Bayes bounds vs. Bayesian learning

Prior
• PAC-Bayes bounds: bounds hold even if prior incorrect
• Bayesian: inference must assume prior is correct

Posterior
• PAC-Bayes bounds: bound holds for all posteriors
• Bayesian: posterior computed by Bayesian inference, depends on

statistical modeling

Data distribution
• PAC-Bayes bounds: can be used to define prior, hence no need to be

known explicitly
• Bayesian: input effectively excluded from the analysis, randomness

lies in the noise model generating the output
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A history of PAC-Bayes

Pre-history: PAC analysis of Bayesian estimators
Shawe-Taylor and Williamson (1997); Shawe-Taylor et al. (1998)

Birth: PAC-Bayesian bound
McAllester (1998, 1999)

McAllester Bound
For any prior P, any δ ∈ (0, 1], we have

Pm

∀Q onH : Rout(Q) 6 Rin(Q) +

√
KL(Q‖P) + ln 2

√
m

δ

2m

 > 1 − δ ,
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A history of PAC-Bayes

Introduction of the kl form
Langford and Seeger (2001); Seeger (2002, 2003); Langford (2005)

Langford and Seeger Bound

For any prior P, any δ ∈ (0, 1], we have

Pm

(
∀Q onH :

kl(Rin(Q)‖Rout(Q)) 6 1
m

[
KL(Q‖P) + ln 2

√
m

δ

] ) > 1 − δ ,

where kl(q‖p) def
= q ln q

p + (1 − q) ln 1−q
1−p > 2(q − p)2.
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A General PAC-Bayesian Theorem

∆-function: “distance” between Rin(Q) and Rout(Q)

Convex function ∆ : [0, 1]× [0, 1]→ R.

General theorem Bégin et al. (2014, 2016); Germain (2015)

For any prior P on H, for any δ∈(0, 1], and for any ∆-function, we have, with
probability at least 1−δ over the choice of Sm ∼ Pm,

∀Q on H : ∆
(

Rin(Q),Rout(Q)
)

6
1
m

[
KL(Q‖P) + ln

I∆(m)

δ

]
,

where

I∆(m) = sup
r∈[0,1]

[
m∑

k=0

(m
k

)
r k(1−r)m−k︸ ︷︷ ︸
Bin
(

k ;m,r
) em∆( k

m , r)

]
.
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General theorem

Pm

(
∀Q on H : ∆

(
Rin(Q),Rout(Q)

)
≤≤≤ 1

m

[
KL(Q‖P) + ln

I∆(m)

δ

])
> 1−δ .

Proof ideas.

Change of Measure Inequality (Csiszár, 1975; Donsker and Varadhan, 1975)
For any P and Q on H, and for any measurable function φ : H→ R, we have

E
h∼Q
φ(h) 6 KL(Q‖P) + ln

(
E

h∼P
eφ(h)

)
.

Markov’s inequality

P (X > a)≤≤≤ E X
a ⇐⇒ P

(
X 6 E X

δ

)
≥≥≥ 1−δ .

Probability of observing k misclassifications among m examples
Given a voter h, consider a binomial variable of m trials with success Rout(h):

Pm
(

Rin(h)= k
m

)
=

(
m
k

)(
Rout(h)

)k(
1 − Rout(h)

)m−k
= Bin

(
k ;m,Rout(h)

)
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Pm

(
∀Q on H : ∆

(
Rin(Q),Rout(Q)

)
≤≤≤ 1

m

[
KL(Q‖P) + ln

I∆(m)

δ

])
> 1−δ .

Proof
m · ∆

(
E

h∼Q
Rin(h), E

h∼Q
Rout(h)

)
Jensen’s Inequality 6 E

h∼Q
m · ∆

(
Rin(h),Rout(h)

)
Change of measure 6 KL(Q‖P) + ln E

h∼P
em∆

(
Rin(h),Rout(h)

)
Markov’s Inequality ≤≤≤ 1−δ KL(Q‖P) + ln

1
δ

E
S ′

m∼Pm
E

h∼P
em·∆(Rin(h),Rout(h))

Expectation swap = KL(Q‖P) + ln
1
δ

E
h∼P

E
S ′

m∼Pm
em·∆(Rin(h),Rout(h))

Binomial law = KL(Q‖P) + ln
1
δ

E
h∼P

m∑
k=0

Bin
(
k ;m,Rout(h)

)
em·∆( k

m ,Rout(h))

Supremum over risk 6 KL(Q‖P) + ln
1
δ

sup
r∈[0,1]

[
m∑

k=0

Bin
(
k ;m, r

)
em∆( k

m , r)

]

= KL(Q‖P) + ln
1
δ
I∆(m) .
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General theorem

Pm

(
∀Q on H : ∆

(
Rin(Q),Rout(Q)

)
≤≤≤ 1

m

[
KL(Q‖P) + ln

I∆(m)

δ

])
> 1−δ .

Corollary
[...] with probability at least 1−δ over the choice of Sm ∼ Pm, for all Q on H :

(a) kl
(

Rin(Q)),Rout(Q)
)
≤≤≤ 1

m

[
KL(Q‖P) + ln 2

√
m

δ

]
Langford and Seeger (2001)

(b) Rout(Q) ≤≤≤ Rin(Q) +

√
1

2m

[
KL(Q‖P) + ln 2

√
m

δ

]
, McAllester (1999, 2003a)

(c) Rout(Q) ≤≤≤ 1
1−e−c

(
c · Rin(Q) + 1

m

[
KL(Q‖P) + ln 1

δ

])
, Catoni (2007)

(d) Rout(Q) ≤≤≤ Rin(Q) + 1
λ

[
KL(Q‖P) + ln 1

δ
+ f (λ,m)

]
. Alquier et al. (2016)

kl(q, p) def
= q ln q

p + (1 − q) ln 1−q
1−p > 2(q − p)2 ,

∆c(q, p)
def
= − ln[1 − (1 − e−c) · p] − c · q ,

∆λ(q, p)
def
= λ

m (p − q) .

27 65



Recap

What we’ve seen so far

Statistical learning theory is about high confidence control of
generalization

PAC-Bayes is a generic, powerful tool to derive generalization
bounds

What is coming next

PAC-Bayes application to large classes of algorithms

PAC-Bayesian-inspired algorithms

Case studies
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A flexible framework

Since 1997, PAC-Bayes has been successfully used in many machine
learning settings.

Statistical learning theory Shawe-Taylor and Williamson (1997); McAllester
(1998, 1999, 2003a,b); Seeger (2002, 2003); Maurer (2004); Catoni
(2004, 2007); Audibert and Bousquet (2007); Thiemann et al. (2017)

SVMs & linear classifiers Langford and Shawe-Taylor (2002); McAllester
(2003a); Germain et al. (2009a)

Supervised learning algorithms reinterpreted as bound minimizers
Ambroladze et al. (2007); Shawe-Taylor and Hardoon (2009); Germain
et al. (2009b)

High-dimensional regression Alquier and Lounici (2011); Alquier and Biau
(2013); Guedj and Alquier (2013); Li et al. (2013); Guedj and Robbiano
(2018)

Classification Langford and Shawe-Taylor (2002); Catoni (2004, 2007);
Lacasse et al. (2007); Parrado-Hernández et al. (2012)
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A flexible framework

Transductive learning, domain adaptation Derbeko et al. (2004); Bégin
et al. (2014); Germain et al. (2016)

Non-iid or heavy-tailed data Lever et al. (2010); Seldin et al. (2011, 2012);
Alquier and Guedj (2018)

Density estimation Seldin and Tishby (2010); Higgs and Shawe-Taylor (2010)

Reinforcement learning Fard and Pineau (2010); Fard et al. (2011); Seldin
et al. (2011, 2012); Ghavamzadeh et al. (2015)

Sequential learning Gerchinovitz (2011); Li et al. (2018)

Algorithmic stability, differential privacy London et al. (2014); London
(2017); Dziugaite and Roy (2018a,b); Rivasplata et al. (2018)

Deep neural networks Dziugaite and Roy (2017); Neyshabur et al. (2017)

30 65



PAC-Bayes-inspired learning algorithms
In all the previous bounds, with an arbitrarily high probability and for any
posterior distribution Q,

Error on unseen data 6 Error on sample+ complexity term

Rout(Q) 6 Rin(Q) + F (Q, ·)

This defines a principled strategy to obtain new learning algorithms:

h ∼ Q?

Q? ∈ arg inf
Q�P

{
Rin(Q) + F (Q, ·)

}
(optimization problem which can be solved or approximated by
[stochastic] gradient descent-flavored methods, Monte Carlo Markov
Chain, Variational Bayes...)
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PAC-Bayes interpretation of celebrated algorithms
SVM with a sigmoid loss and KL-regularized Adaboost have been
reinterpreted as minimizers of PAC-Bayesian bounds.
Ambroladze et al. (2007), Shawe-Taylor and Hardoon (2009), Germain et al.
(2009b)

For any λ > 0, the minimizer of{
Rin(Q) +

KL(Q,P)

λ

}
is the celebrated Gibbs posterior

Qλ(h) ∝ exp (−λRin(h))P(h), ∀h ∈ H.

Extreme cases: λ→ 0 (flat posterior) and λ→∞ (Dirac mass on
ERMs). Note: continuous version of the exponentially weighted
aggregate (EWA).
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Variational definition of KL-divergence (Csiszár, 1975; Donsker and
Varadhan, 1975; Catoni, 2004).

Let (A,A) be a measurable space.

(i) For any probability P on (A,A) and any measurable function
φ : A→ R such that

∫
(exp ◦φ)dP <∞,

log

∫
(exp ◦φ)dP = sup

Q�P

{∫
φdQ −KL(Q,P)

}
.

(ii) If φ is upper-bounded on the support of P, the supremum is
reached for the Gibbs distribution G given by

dG
dP

(a) =
exp ◦φ(a)∫
(exp ◦φ)dP

, a ∈ A.
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log
∫
(exp ◦φ)dP = sup

Q�P

{∫
φdQ −KL(Q,P)

}
, dG

dP = exp◦φ∫
(exp◦φ)dP .

Proof: let Q � P.

−KL(Q,G) = −

∫
log

(
dQ
dP

dP
dG

)
dQ

= −

∫
log

(
dQ
dP

)
dQ +

∫
log

(
dG
dP

)
dQ

= −KL(Q,P) +

∫
φdρ− log

∫
(exp ◦φ) dP.

KL(·, ·) is non-negative, Q 7→ −KL(Q,G) reaches its max. in Q = G:

0 = sup
Q�P

{∫
φdQ −KL(Q,P)

}
− log

∫
(exp ◦φ) dP.

Take φ = −λRin,

Qλ ∝ exp (−λRin)P = arg inf
Q�P

{
Rin(Q) +

KL(Q,P)

λ

}
.
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PAC-Bayes for non-iid or heavy-tailed data

We drop the iid and bounded loss assumptions. For any integer p,

Mp :=

∫
E (|Rin(h) − Rout(h)|p) dP(h).

Csiszár f -divergence: let f be a convex function with f (1) = 0,

Df (Q,P) =

∫
f
(
dQ
dP

)
dP

when Q � P and Df (Q,P) = +∞ otherwise.

The KL is given by the special case KL(Q‖P) = Dx log(x)(Q,P).
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PAC-Bayes with f -divergences Alquier and Guedj (2018)

Let φp : x 7→ xp. Fix p > 1, q = p
p−1 and δ ∈ (0, 1). With probability at

least 1 − δ we have for any distribution Q

|Rout(Q) − Rin(Q)| 6

(
Mq

δ

) 1
q (

Dφp−1(Q,P) + 1
) 1

p .

The bound decouples

the moment Mq (which depends on the distribution of the data)

and the divergence Dφp−1(Q,P) (measure of complexity).

Corolloray: with probability at least 1 − δ, for any Q,

Rout(Q) 6 Rin(Q) +

(
Mq

δ

) 1
q (

Dφp−1(Q,P) + 1
) 1

p .

Again, strong incitement to define the posterior as the minimizer of the
right-hand side!
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Proof
Let ∆(h) := |Rin(h) − Rout(h)|.∣∣∣∣∫ RoutdQ −

∫
RindQ

∣∣∣∣
Jensen 6

∫
∆dQ

Change of measure =

∫
∆
dQ
dP

dP

Holder 6

(∫
∆qdP

) 1
q
(∫ (

dQ
dP

)p

dP
) 1

p

Markov 6
1−δ

(
E
∫
∆qdP
δ

) 1
q
(∫ (

dQ
dP

)p

dP
) 1

p

=

(
Mq

δ

) 1
q (

Dφp−1(Q,P) + 1
) 1

p .
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Oracle bounds

Catoni (2004, 2007) further derived PAC-Bayesian bound for the Gibbs
posterior

Qλ ∝ exp (−λRin)P.

Assume that the loss is upper-bounded by B, for any λ > 0, with
probability greater that 1 − δ

Rout(Qλ) 6 inf
Q�P

{
Rout(Q) +

λB
m

+
2
λ

(
KL(Q,P) + log

2
δ

)}
(can be optimized with respect to λ)

Pros: Qλ now enjoys stronger guarantees as its performance is
comparable to the (forever unknown) oracle.
Cons: the right-hand side is no longer computable.
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The plan

1 Elements of Statistical Learning

2 The PAC-Bayesian Theory

3 State-of-the-art PAC-Bayes results: a case study
Localized PAC-Bayes: data- or distribution-dependent priors
Stability and PAC-Bayes
PAC-Bayes analysis of deep neural networks
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Data- or distribution-dependent priors
PAC-Bayesian bounds express a tradeoff between empirical accuracy
and a measure of complexity

Rout(Q) 6 Rin(Q) +

√
KL(Q‖P) + ln ξ(m)

δ

2m
.

How can this complexity be controlled?
An important component in the PAC-Bayes analysis is the choice of
the prior distribution
The results hold whatever the choice of prior, provided that it is
chosen before seeing the data sample
Are there ways we can choose a ‘better’ prior?
Will explore:

using part of the data to learn the prior for SVMs, but also more
interestingly and more generally
defining the prior in terms of the data generating distribution (aka
localised PAC-Bayes).
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SVM Application

Prior and posterior distributions are spherical Gaussians:
Prior centered at the origin
Posterior centered at a scaling µ of the unit SVM weight vector

Implies KL term is µ2/2

We can compute the stochastic error of the posterior distribution
exactly and it behaves like a soft margin; scaling µ trades between
margin loss and KL

Bound holds for all µ, so choose to optimise the bound

Generalization of deterministic classifier can be bounded by twice
stochastic error
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Learning the prior for SVMs

Bound depends on the distance between prior and posterior

Better prior (closer to posterior) would lead to tighter bound

Learn the prior P with part of the data

Introduce the learnt prior in the bound

Compute stochastic error with remaining data: PrPAC

We can go a step further:
Consider scaling the prior in the chosen direction: τ-PrPAC
adapt the SVM algorithm to optimise the new bound: η-Prior SVM

We present some results to show the bounds and their use in model
selection (regularisation and band-width of kernel).
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Results

Classifier
SVM ηPrior SVM

Problem 2FCV 10FCV PAC PrPAC PrPAC τ-PrPAC

digits Bound – – 0.175 0.107 0.050 0.047
TE 0.007 0.007 0.007 0.014 0.010 0.009

waveform Bound – – 0.203 0.185 0.178 0.176
TE 0.090 0.086 0.084 0.088 0.087 0.086

pima Bound – – 0.424 0.420 0.428 0.416
TE 0.244 0.245 0.229 0.229 0.233 0.233

ringnorm Bound – – 0.203 0.110 0.053 0.050
TE 0.016 0.016 0.018 0.018 0.016 0.016

spam Bound – – 0.254 0.198 0.186 0.178
TE 0.066 0.063 0.067 0.077 0.070 0.072
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Results

Bounds are remarkably tight: for final column average factor
between bound and TE is under 3.

Model selection from the bounds is as good as 10FCV: in fact all but
one of the PAC-Bayes model selections give better averages for TE.

The better bounds do not appear to give better model selection -
best model selection is from the simplest bound.
Ambroladze et al. (2007), Germain et al. (2009a)
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Distribution-defined priors

Consider P and Q are Gibbs-Boltzmann distributions

Pγ(h) :=
1

Z ′
e−γRout(h) Qγ(h) :=

1
Z

e−γRin(h)

These distributions are hard to work with since we cannot apply the
bound to a single weight vector, but the bounds can be very tight:

kl(Rin(Qγ)||Rout(Qγ)) 6
1
m

(
γ√
m

√
ln

8
√

m
δ

+
γ2

4m
+ ln

4
√

m
δ

)

with the only uncertainty the dependence on γ.

Catoni (2003), Catoni (2007), Lever et al. (2010)
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Observations

We cannot compute the prior distribution P or even sample from it:
Note that this would not be possible to consider in normal Bayesian
inference;
Trick here is that the error measures only depend on the posterior Q,
while the bound depends on KL between posterior and prior: an
estimate of this KL is made without knowing the prior explicitly

The Gibbs distributions are hard to sample from so not easy to work
with this bound.
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Other distribution defined priors

An alternative distribution defined prior for an SVM is to place
symmetrical Gaussian at the weight vector:
wp = E(x,y)∼D(yφφφ(x)) to give distributions that are easier to work
with, but results not impressive...

What if we were to take the expected weight vector returned from a
random training set of size m: then the KL between posterior and
prior is related to the concentration of weight vectors from different
training sets

This is connected to stability...
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The plan

1 Elements of Statistical Learning

2 The PAC-Bayesian Theory

3 State-of-the-art PAC-Bayes results: a case study
Localized PAC-Bayes: data- or distribution-dependent priors
Stability and PAC-Bayes
PAC-Bayes analysis of deep neural networks
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Stability

Uniform hypothesis sensitivity β at sample size m:

‖A(z1:m) − A(z ′1:m)‖ 6 β
∑m

i=1 1[zi 6= z ′i ]

(z1, . . . , zm) (z′1, . . . , z
′
m)

A(z1:m) ∈ H normed space

wm = A(z1:m) ‘weight vector’

Lipschitz

smoothness

Uniform loss sensitivity β at sample size m:

|`(A(z1:m), z) − `(A(z ′1:m), z)| 6 β
∑m

i=1 1[zi 6= z ′i ]

worst-case

data-insensitive

distribution-insensitive

Open: data-dependent?
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Generalization from Stability

If A has sensitivity β at sample size m, then for any δ ∈ (0, 1),

w.p. > 1 − δ, Rout(h) 6 Rin(h) + ε(β,m, δ)

Bousquet and Elisseeff (2002)

the intuition is that if individual examples do not affect the loss of an
algorithm then it will be concentrated

can be applied to kernel methods where β is related to the
regularisation constant, but bounds are quite weak

question: algorithm output is highly concentrated
=⇒ stronger results?
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Stability + PAC-Bayes
If A has uniform hypothesis stability β at sample size m, then
for any δ ∈ (0, 1), w.p. > 1 − 2δ,

kl
(
Rin(Q)‖Rout(Q)

)
6

mβ2

2σ2

(
1 +

√
1
2 log

( 1
δ

) )2
+ log

(m+1
δ

)
m

Gaussian randomization

• P = N(E[Wm],σ
2I)

• Q = N(Wm,σ
2I)

•KL(Q‖P) =
1

2σ2 ‖Wm−E[Wn]‖2

Main proof components:

w.p. > 1 − δ, kl
(
Rin(Q)‖Rout(Q)

)
6

KL(Q‖Q0)+log
(

m+1
δ

)
m

w.p. > 1 − δ, ‖Wm − E[Wm]‖ 6
√

m β
(

1 +
√

1
2 log

( 1
δ

))
Dziugaite and Roy (2018a), Rivasplata et al. (2018)
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Localized PAC-Bayes: data- or distribution-dependent priors
Stability and PAC-Bayes
PAC-Bayes analysis of deep neural networks

53 65



Is deep learning breaking the statistical paradigm we
know?

Neural networks architectures trained on massive datasets achieve zero
training error which does not bode well for their performance...

... yet they also achieve remarkably low errors on test sets!

PAC-Bayes is a solid candidate to better understand how deep nets
generalize.
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The celebrated bias-variance tradeoff

R
is
k

Training risk

Test risk

Complexity of H
sweet spot

under-fitting over-fitting

Belkin et al. (2018)
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Towards a better understanding of deep nets
R
is
k

Training risk

Test risk

Complexity of H

under-parameterized

“modern”
interpolating regime

interpolation threshold

over-parameterized

“classical”
regime

Belkin et al. (2018)
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Performance of deep nets

Deep learning has thrown down a challenge to Statistical Learning
Theory: outstanding performance with overly complex hypothesis
classes (most bounds turn vacuous)

For SVMs we can think of the margin as capturing an accuracy with
which we need to estimate the weights

If we have a deep network solution with a wide basin of good
performance we can take a similar approach using PAC-Bayes with
a broad posterior around the solution
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Performance of deep nets

Dziugaite and Roy (2017), Neyshabur et al. (2017) have derived some
of the tightest deep learning bounds in this way

by training to expand the basin of attraction
hence not measuring good generalisation of normal training
Dziugaite and Roy (2017) have also tried to apply the Lever et al.
(2013) bound but observed cannot measure generalisation correctly
for deep networks as has no way of distinguishing between
successful fitting of true and random labels

There have also been suggestions that stability of SGD is important
in obtaining good generalization (see Dziugaite and Roy (2018b))

We presented stability approach combining with PAC-Bayes: this
results in a new learning principle linked to recent analysis of
information stored in weights
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Information contained in training set

Achille and Soatto (2018) studied the amount of information stored in
the weights of deep networks

Overfitting is related to information being stored in the weights that
encodes the particular training set, as opposed to the data
generating distribution

This corresponds to reducing the concentration of the distribution of
weight vectors output by the algorithm

They argue that the Information Bottleneck criterion introduced by
Tishby et al. (1999) can control this information: hence could
potentially lead to a tighter PAC-Bayes bound

Potential for algorithms that optimize the bound
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Conclusion

PAC-Bayes arises from two fields:

Statistical learning theory
Bayesian learning

As such, it generalizes both in interesting and promising directions.

We believe PAC-Bayes can be an inspiration towards

new theoretical analyses
but also drive novel algorithms design, especially in settings where
theory has proven difficult.
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M. M. Fard, J. Pineau, and C. Szepesvári. PAC-Bayesian Policy Evaluation for Reinforcement Learning. In UAI, Proceedings of the
Twenty-Seventh Conference on Uncertainty in Artificial Intelligence, pages 195–202, 2011.

S. Gerchinovitz. Prédiction de suites individuelles et cadre statistique classique : étude de quelques liens autour de la régression
parcimonieuse et des techniques d’agrégation. PhD thesis, Université Paris-Sud, 2011.
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