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Goal

• Share ideas that are

• exciting


• powerful: enable us to solve previously unsolved problems

• insightful

• true path


• not well-known in ML, but useful in ML

• developed outside traditional ML community


• population-based methods

• but broadly applicable


• non-population based methods (e.g. RL, deep learning)

• beyond neural networks


• decision trees, program synthesis, etc. 



Goal

• introduce

• new methods

• new types of problems

• including two grand challenges



Topics Covered & Schedule

• Novelty Search

• Quality Diversity

• Q&A (5 minutes)

• Open-Ended Search

• Indirect Encoding

• Looking Forward & Conclusions

• Q&A



Population-based Search 

• Main idea: Maintain a population of candidate solutions 

From: Deepmind Blog post on PBT 



Population-based Search 

• Canonical example:  
Vanilla Genetic Algorithm 

•  Randomly initialize all members of 
population 

•  Iteratively: 
•  Evaluate population 
•  Cull population 
•  Make noisy copies 

• Not a convincing case for benefits of a 
population 

•  Convergent 
•  One BBO among many 

from David Ha 



Diversity-centric Search 

• Encouraging diversity as a central drive 
• Novelty search (Lehman and Stanley 2008) 

•  What would a search process driven only by diversity look like? 
• Hypothesis: Diversity-centric search might be necessary to 

scale to our most ambitious ML objectives 
•  Why? 



Objectives and Objective Functions 

• Objective functions are ubiquitous in ML 
•  Measure of quality of a solution 
•  Implicitly defines an objective to reach (by optimizing OF) 

• The issue of local optima 
•  Sometimes objective functions are smooth and easy to optimize 
•  Sometimes optimization is more difficult because of thorny local optima 

• Would our problems be solved if we simply created more 
powerful optimization algorithms? 



Deception 





Deception 

• The problem of deception: When aimed at ambitious 
objectives, the objective function often becomes a false 
compass 

• Stepping stones to objective often seemingly unrelated to 
objective 

•  From abacuses to laptops [electricity, vacuum tubes] 
•  From prokaryotes to humans [multicellularity, development, neurons] 
•  From random init to highly-intelligent robotic control policies [?] 

 



The Problem with Ambitious Objectives 

• Hopeful assumption: Improved performance will lead to greater 
improvements, all the way to success 

• Doesn’t always work (local optima), which motivates: 
•  Curriculum learning (Bengio et al. 2009) 
•  Reward shaping/engineering (Ng et al. 1999) 
•  Intrinsic motivation (Oudeyer and Kaplan 2007, Schmidhuber 1991) 
•  Optimal reward functions (Singh et al. 2010) 

• Overarching issue:  
Stepping stones to success don’t always resemble success  





Towards more creative search 

• Radical idea: 
Can search that is ignorant of its intended objective sometimes 
outperform search that is aimed directly at its objective? 

•  Can pursuing an ambitious objective undermine attaining it? 
• What could instantiate a more open-ended search? 

•  Creative, divergent forces? 



Novelty Search 

• Guiding search only by novelty 
• Objective-driven heuristic: What improves performance locally is 

a stepping stone towards great performance 
• Novelty-driven heuristic: What is novel may 

lead to further novelties 



Novelty Search Algorithm 

• Take a population-based search algorithm 
•  Replace standard goal-based objective function with measure of  

behavioral novelty  
•  Measured relative to current population and archive of previously-novel 

• Over generations, search spreads out over the behavior space 

k-Nearest Neighbors 
distance Behavior space 



Mazes 



Mazes 



Visualization in Maze Navigation 
Novelty Objective 

(Lehman and Stanley 2008) 

Visualization in Maze Navigation
Novelty Objective

(Lehman and Stanley 2008)



Visualization in Maze Navigation 
Novelty Objective 

(Lehman and Stanley 2008) 



Biped Locomotion 

(Lehman and Stanley 2012) 

Objective Novelty 



Works in Deep RL context too 
• As an extension of OpenAI’s ES (Conti et al. 2018) 
• As an extension of Uber’s Deep GA (Such et al. 2017) 

(Conti et al. 2018) 
 



Related Work 

• See also:  
Autonomous mental development / intrinsic motivation / 
curiosity (Oudeyer and Kaplan 2007, Schmidhuber 1991) 

From: (Oudeyer et al. 2007) 



Related Ideas in Deep RL 

• DIAYN (Eysenbach et al. 2018) 
• Curiosity-driven exploration (Pathak et al. 2017) 
• Skew-fit (Pong et al. 2019) 
• Hindsight Experience Replay (Andrychowicz et al. 2017) 
• Unsupervised Meta-learning (Gupta et al. 2018) 



Diversity is All You Need: Learning 
Diverse Skills without a Reward Function 

(Eysenbach et al. 2018) 



Curiosity-driven Exploration by Self-
Supervised Prediction 

(Pathak et al. 2017) 



Novelty Search Conclusions 

• Pressure towards creative divergence alone can sometimes 
outperform directly seeking the objective 

• But what about the pressure to achieve (also a key force in 
biological and technological evolution)? 

 



Combining Novelty and Achievement 
(Mouret and Doncieux 2012) 
• While raw novelty can work, natural to merge novelty pressure 

with pressure to achieve 
•  Many paradigms: Weighted average of objective + novelty; objective 

until stuck, then switch to novelty; etc. 
• Effective in practice: Population-based multi-objective 

optimization 
(Fonseca et al. 1995) 

•  Simultaneously explore all trade-offs between objectives 



Population-based Multi-objective 
Optimization 
• Popular algorithms include NSGA-II (Deb et al. 2002) 
• Main idea: Maintain pareto front of non-dominated solutions 

•  A>B only if  
•  objective_score(A) > objective_score(B) and  
•  novelty(A) > novelty(B) 

• Another interesting possibility  
enabled by maintaining a population 

 
 

Novelt
y 

Objective score 



Diversity + Performance as Equals 

• Problems with combining novelty and 
global competition objective 

•  Does not address the fundamental 
problem of deception 

•  Embodies paradigm of diversity in service 
of progress 

• What about an algorithm with equal 
priority to diversity and performance? 

•  To optimize towards the best version of 
each possible solution niche? 

 



Quality Diversity (Pugh et al. 2016) 

• Different kind of search process: 
Find the best possible example of each achievable behavior 

• Build a repertoire of different ways to solve a problem 
•  Highlights a wide range of possible designs that a designer can choose 

from 
•  Can enable a robot to adapt to new circumstances 
•  Can circumvent deception by creating an implicit curriculum 



Quality Diversity 

• Sometimes objective performance not the most important factor 
•  Illuminate the space of diverse possible solutions 
•  Diversity in how a problem is solved sometimes more important/

interesting than gaining only the single-most efficient solution 
 
 



Quality Diversity 

• Sometimes objective performance not the most important factor 
•  Illuminate the space of diverse possible solutions 
•  Diversity in how a problem is solved sometimes more important/

interesting than gaining only the single-most efficient solution 
 
 

3 years to sexual maturity 20 minutes to sexual 
maturity 



Illustrative Domain: Virtual Creatures 

• Evolve both the morphology and controller of a virtual robot 
• What if we want to see the best possible locomotion strategies 

for all areas of a morphology space? 



Morphology Space 

• Height 
• Mass 
• Number of Active Joints 

Height 

Mass 



Novelty Search with Local Competition 
(Lehman and Stanley 2011) 
• Global competition:  

Niches with higher capacity for objective performance favored 
•  Compete globally on absolute performance score 

• Local competition:  
Niches are explored relative to their local capacity for 
performance 

•  Compete locally: how many of your morphological nearest-neighbors 
do you out-perform? 

 



Novelty Search with Local Competition 

Novelt
y 

Local competition 
score 



Exploring the Morphology Space 

Novelty Objective Global Competition Local Competition 







Salimans, Ho, Chen, Sidor, Sutskever 2017

Traditional machine learning methods produce 
little diversity



Cheney, MacCurdy, Clune, Lipson 2013

Population-based methods also produce little 
diversity



• a diverse set of high-performing agents (policies)

Quality Diversity Algorithms



Challenge: Diversity & Performance

• Quality diversity algorithms 
• Novelty Search + Local Competition (Lehman & Stanley)



Challenge: Diversity & Performance

• Quality diversity algorithms 
• Novelty Search + Local Competition (Lehman & Stanley) 
• MAP-Elites (Mouret & Clune)

Jean-Baptiste Mouret



MAP-Elites

• Multi-dimensional Archive of Phenotypic Elites 
• Choose dimensions of interest in behavior space 
• Discretize 
• Mutate, locate, replace if better, repeat

He
ig

ht

Weight

Mouret & Clune 2015



MAP-Elites
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• Multi-dimensional Archive of Phenotypic Elites 
• Choose dimensions of interest in behavior space 
• Discretize 
• Mutate, locate, replace if better, repeat

Fitness

Mouret & Clune 2015
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MAP-Elites
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• Multi-dimensional Archive of Phenotypic Elites 
• Choose dimensions of interest in behavior space 
• Discretize 
• Mutate, locate, replace if better, repeat

Mouret & Clune 2015



MAP-Elites
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W: 7

• Multi-dimensional Archive of Phenotypic Elites 
• Choose dimensions of interest in behavior space 
• Discretize 
• Mutate, locate, replace if better, repeat

Mouret & Clune 2015
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MAP-Elites
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MAP-Elites

He
ig

ht

Weight

Feature 1 Feature 2

P
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ce

Elite

Returned By AlgorithmArea Searched
High-Dimensional 

Search Space

Set of diverse, 
high-quality 

solutions

• Multi-dimensional Archive of Phenotypic Elites 
• Choose dimensions of interest in behavior space 
• Discretize 
• Mutate, locate, replace if better, repeat

Mouret & Clune 2015



• Dimensions 
• number of voxels 
• % bone (dark blue)

Feature 1 Feature 2

P
er

fo
rm

an
ce

Elite

Returned By AlgorithmArea Searched
High-Dimensional 

Search Space

Soft Robots Problem
Mouret & Clune 2015



MAP-ElitesClassic + Diversity

Soft Robots Problem

Classic Optimization

num voxels

%
 b

on
e

same # evals!

Mouret & Clune 2015

multi-objective EA EA 
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ss

Same agents, 
from the side

Mouret & Clune 2015



Different Runs: Soft Robot Problem

MAP-ElitesClassic Optimization Classic + Diversity



Retina Problem

Mouret & Clune 2015



“Goal Switching”

• When trying to solve task A, if you make progress on task B

• keep the innovation and let it keep working on B

Nguyen, Yosinski & Clune 2016



Goal Switching:  
Key for Science & Technological Innovation

• Radar                            microwaves

• Vacuum tubes               computers

• basic physics                clean energy (nuclear) 

• etc. 



• We want our algorithms to capture serendipitous discoveries

• QD does that via Goal Switching

Serendipity

MAP-Elites



Goal Switching

retina problem color = reward MAP-Elites Mouret & Clune 2015



MAP-Elites Lineages of a Few Final Solutions
Circles are iteration 0, color = reward

Automated Curricula Learning

MAP-Elites Mouret & Clune 2015



• Nature, Culture, & QD algorithms are Innovation Engines

• generate permutations of previous interesting things

• if interesting, keep them

• repeat

Innovation Engines
Nguyen, Yosinski & Clune 2015



Innovation Engines

Collector &  
Generator

Interesting-ness 
Evaluator

MAP-Elites 
one bin per ImageNet class 

Encodings: Small CPPN networks
AlexNet

Nguyen, Yosinski & Clune 2015



Nguyen, Yosinski & Clune 2015

Goal Switching



Goal Switching

• Many-class MAP-Elites vs. One-class MAP-Elites

Nguyen, Yosinski & Clune 2015
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Nguyen, Yosinski & Clune 2015



Goal Switching Enables Good Ideas to Spread

• Fundamental advances spread to other problems/niches

• Then are built upon to solve that specific problem

• “Adaptive Radiations”



Adaptive Radiations 
in QD!

Nguyen, Yosinski & Clune 2015
Innovation Engines



Hindsight Experience Replay

• RL algorithm

• single agent

• uses goal-conditioned Q-learning


• Try to go to a goal

• If you end up somewhere else, pretend that was your goal

• goal switching!


• Eventually learn the highest-quality way to do a diverse set of things

• effectively is a QD algorithm


• where the “population” is in goals for one agent, not a population of agents

Andrychowicz et al. 2017



Multi-Modal Agents

• Wanted: robots that can perform many different actions/skills

• in different contexts (e.g. options hierarchical RL)

• solve different problems


• Insight: QD algorithms can help produce such generalists

CMOEA. Huizinga & Clune 2018

Turn LeftMove Forward JumpMove Backward Turn Right



Multi-Modal Agents

• A curriculum probably helps

• Which one?

CMOEA. Huizinga & Clune 2018

Turn LeftMove Forward JumpMove Backward Turn Right



CMOEA

• Idea: one niche per 

• single task

• combination of tasks

Huizinga & Clune 2018



Move Forward Turn Right Jump

Move Forward
Move Backward

Move Forward
Turn Left

Turn Right
& Jump

Move Forward, 
Move Backward

Turn Left

Move Backward Turn Left

Move Forward
Turn Right

Move Forward
Jump

Move Forward, 
Move Backward

Turn Right

Move Forward, 
Move Backward

Jump

Move Backward
Turn Left

Jump

Move Backward
Turn Right

Jump
…

…

…
All Tasks

CMOEA
Huizinga & Clune 2018
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Other Applications of Quality Diversity Algorithms



Back on its feet
Using an intelligent trial-and-error learning 

algorithm this robot adapts to injury in minutes  
PAGES 426 & 503

INSIGHT
Machine  

intelligence  

T H E  I N T E R N AT I O N A L  W E E K LY  J O U R N A L  O F  S C I E N C E Robots that adapt 
 like animals 

Nature 2015





Damage Recovery



Modern, Learning-Based Approaches

Kohl & Stone 2004Yosinski et al. 2013 Bongard et al. 2006

• Simple robots (low-dimensional state & action spaces) 

• Require lots of real-world trials



Animals

• Have intuitions about different ways to move 

• Conduct a few, intelligent tests 

• Pick a behavior that works despite injury



Robots that Adapt Like Animals

• Have intuitions about different ways to move 

• Conduct a few, intelligent tests 

• Pick a behavior that works despite injury

intuitions about 
different ways to move few, intelligent tests pick one that works 

despite injury





intuitions about 
different ways to move

• MAP-Elites

• Behavioral characterization
• % of time each leg touches the ground (6-dimensional)

• Massive search space

• MAP-Elites map has ~13,000 diverse, high-performing gaits
Initial Map
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intuitions about 
different ways to move



Corner Case: Feet never touch the ground



intuitions about 
different ways to move

Initial Map

Dim 1

D
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Dim 5D
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Dim 3

Dim 2Dim 1

Dim 4

Dim 6
Dim 5

Dim 3

On the simulated,  
undamaged robot



intuitions about 
different ways to move few, intelligent tests

Initial Map

Dim 1

D
im
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D
im
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Dim 5D
im
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Dim 3

Dim 2Dim 1

Dim 4

Dim 6
Dim 5

Dim 3

Which behaviors should we test? 



intuitions about 
different ways to move few, intelligent tests

Initial Map

Dim 1

D
im

 2

D
im

 6

Dim 5D
im

 4

Dim 3

Dim 2Dim 1

Dim 4

Dim 6
Dim 5

Dim 3

Could try top N: 

But they are likely very similar.



Bayesian Optimization: 

Tries different types solutions 

intuitions about 
different ways to move few, intelligent tests

Initial Map
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Dim 6
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Dim 3



Bayesian Optimization

Initial Map

Dim 1

D
im

 2

D
im

 6

Dim 5D
im

 4

Dim 3

Dim 2Dim 1

Dim 4

Dim 6
Dim 5

Dim 3

Posterior Map

Prior:  
MAP-Elites Map 

Posterior:  
Map updated after 

real-world tests

Stop when:  
A real-world 

behavior is >90% of 
best untested point



One-dimensional Example

Uncertainty
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“Intelligent Trial & Error”

intuitions about 
different ways to move few, intelligent tests pick one that works 

despite injury

MAP-Elites Map 
Bayesian 

Optimization 
w Map as Prior 

Found >90% of 
Best Possible 







Different Damage Conditions & Behavioral Descriptions
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Different Robot
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Deep RL +  
Intelligent Trial & Error

• Policy gradients to optimize 
objective 

• Store actions in each bin 

• Population-based policy 
gradients



Conclusions: Intelligent Trial & Error
• State of the Art Robot Damage Recovery 

• adaptation, more broadly 

• Adapts in < 2 minutes 

• Combines  
• expensive creativity/power of MAP-Elites (in simulation) 

• with data efficiency of Bayesian optimization (in the real world) 

• Shows a benefit of QD: learning diverse, high-performing sets of 
policies

intuitions about  
different ways to move 

MAP-Elites

few, intelligent tests 
Bayesian 

Optimization

pick one that works 
despite injury 

found > X% of best

Back on its feet
Using an intelligent trial-and-error learning 

algorithm this robot adapts to injury in minutes  
PAGES 426 & 503

INSIGHT
Machine  

intelligence  

T H E  I N T E R N AT I O N A L  W E E K LY  J O U R N A L  O F  S C I E N C E



Behavioral Characterization

• Hand-coded in most work

Initial Map
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Learned Behavioral Characterizations

• Generate data randomly

• Loop

• Apply dimensionality reduction

• e.g. auto-encoder


• Discretize latent code

• Run MAP-Elites

AURORA, Cully 2019



Go-Explore 
A new approach for hard-exploration problems



Grand Challenge in Deep RL 
Effective Exploration

• Hard-exploration problems

• Sparse-reward problems

• rare feedback

• Montezuma’s Revenge


• Deceptive problems

• wrong feedback (wrt global optimum)



Go-Explore 
Separates learning a solution into two phases

current work: 

exploits deterministic training, no neural networks

produces neural network

robust to stochasticity

Phase 1: explore until solved Phase 2: robustify
(if necessary)

Go to state
Explore

from state
Update 
archive

Run imitation learning
on best trajectory

Select state
from archive

Phase 1: Explore Until Solved Phase 2: Robustify

(if necessary)



Go-Explore: Phase 1

• Phase 1: explore until solved

A. choose a state from archive

B. Go back to it

C. Explore from it

D. add newly found states to archive

• if better, replace old way of reaching state

Phase 1: explore until solved Phase 2: robustify
(if necessary)

Go to state
Explore

from state
Update 
archive

Run imitation learning
on best trajectory

Select state
from archive

An enhanced version of MAP-Elites

A

B

C

D



• Average score: 660,000

• Best Go-Explore policy

• scores ~18 million

• solved 1,141 levels


• Beats human world record

• 1,219,200

Montezuma’s Revenge Results

Note: exploits domain knowledge & 
deterministic training



• no prior scores > 0

• without:

• fully deterministic test 

environment

• or human demonstration


• average score: 59,000

• max: 107,000

• significantly advances 

state of the art

Pitfall Results



Go-Explore

• Shows value of QD ideas

• collecting a diverse repertoire of 

high-quality entities

• Helped solve a previously 

unsolved problem



Future Work: Further Exploiting the QD Map
• Learn representations

• Learn world models

• Learn options (e.g. goal/task-

conditioned policies)

• Learn agent models

• What else?




Conclusions: Quality Diversity Algorithms

• Generate a set of diverse, high-quality solutions

• Healthy internal dynamics

• collect stepping stones

• goal-switching 

• avoids local optima

• harnesses serendipity


• build on innovations via adaptive radiations

• learn multiple, overlapping curricula


• Often is the best way even if you only want to 
solve one ambitious problem



Related Work: Population Based Training + QD 
(inspired by Arulkumaran et al 2019)
• Population-based training (Jaderberg et al. 2017)



PBT Applications

(Jaderberg et. al 2018) (Ho et. al 2019)

(Jaderberg et. al 2017)



Alphastar 



Population Based Training + QD



Q&A

• 5 minutes



Beyond QD: 
The Grand Challenge  
of Open-Endedness 

•  Divergent search intentionally exposes the 
space of the possible 

•  But in any given domain, what is possible 
(at least of any interest), is finite 

•  Are there algorithms that not only find 
what is possible, but also invent endless 
new possibilities? 

•  QD seems close, but not quite there 



A Different Kind of Learning 

•  Not how to learn something 
•  But how to learn everything 
•  A human learning to play a video game is 

interesting 
•  But the history of human invention is 

beyond interesting 
•  Or: natural evolution – the ongoing 

creation of all the diversity of life on Earth 



One run of evolution, 
all life on Earth 
(no human 
intelligence!) 

Thinglink.com 



One run of evolution, 
all life on Earth 
(no human 
intelligence!) 

Thinglink.com 

Human-level  
Intelligence, a tiny 
moment in an 
endless saga 



One run of evolution, 
all life on Earth 
(no human 
intelligence!) 

Thinglink.com 

Endless Surprises! 
(and it keeps on going) 









Not Like Even the Closest Ideas 

•  Not like QD 
– QD doesn’t invent new problems 

•  Not like a GAN 
– A GAN exposed to billions of flatworms will 

never conceive a human 
•  Not like self-play or coevolution 

– AlphaGo will only improve at Go 
– There will never be a new game in town 

•  What kind of algorithm is OE? 



The Never-Ending Algorithm 

bittbox.com 
 



The Never-Ending Algorithm 

bittbox.com 
 

Open-Ended Evolution 



The Never-Ending Algorithm 

bittbox.com 
 

More Generally: 
Open-Endedness 



The Never-Ending Algorithm 
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Open-Endedness: 
 

The history of human innovation 
…of art 

…of science 
…of architecture 

etc… 



Why don’t we create  
open-ended algorithms? 



Why don’t we create  
open-ended algorithms? 

 
Why only solve problems? 

 



Exception: The OEE Community 
•  Open-ended evolution (OEE) is a 

traditional topic of artificial life 
•  OEE is the power of creation 

–  Potentially transformative 
–  Boundless creativity on 

demand 
–  Discoveries beyond the scope 

of optimization 
•  A grand challenge on the scale of 

AI; maybe the path to AI itself 
–  Why so little attention? 



Much of the Seminal Work in 
Open-Endedness Was in  

“Alife Worlds” 

Geb  
(Alastair Channon  
2001, 2003) 

Division Blocks 
(Lee Spector, Jon Klein, 
Mark Feinstein 2007) 

Avida (Charles Ofria, Chris Adami, 
Titus Brown, et al. 1994-) 

Evosphere (Thomas Miconi 2008) Polyworld (Larry Yaeger 1994-) Chromaria (Lisa Soros & Ken Stanley 2014-) 



But It Doesn’t Have to Be a 
“World” 

•  A “world” is just a conduit to understanding 
•  It doesn’t even have to be a metaphor for 

organisms on Earth 
– Deep learning can play a role 

•  We are seeking the fundamental 
conditions for divergent, creative 
processes that never end 

•  They could be applied to anything 
 



The Promise of Open-Endedness 
•  Design of buildings, vehicles, furniture, clothing, 

equipment, etc. 
•  Repertoires of controllers for vehicles, robots, 

UAVs, spaceships, etc. 
•  Endless generators of art and music 
•  Open-ended video game worlds with the 

granularity and originality of ecologies on Earth 
•  Renewed understanding and acceleration of the 

process of human invention 
•  Human-coupled open-ended systems 
•  Intelligence itself? 



Even QD Algorithms Won’t 
Invent Forever 

•  Important step but… 
•  What happens when the space of the 

possible is filled? 
•  What causes new possibilities to arise? 

– And forever? 
•  Answer: The system needs to generate 

new opportunities and search through 
them at the same time 
– The key to Earth’s open-ended creativity 



So How Will We Achieve Open-
Endedness?  

•  Any great puzzle leads to surprises 
– Expect counter-intuitive insights 



Some Interesting Clues in 
Artificial Systems 

•  The Picbreeder experiment 
–  Showed actual signs of open-endedness 
–  But with humans in the loop, breeding pictures 

•  Main idea: Anyone can follow up from anyone else’s 
discoveries; no unified goal for the system 



Observing Picbreeder.org 





Parent 



Parent 



And  
so on… 

Parent 



Discoveries by Picbreeder Users 
(All are 100% bred: no retouching) 



Actually Looks Open-Ended!  
(Phylogenies emerging) 



What We Discovered: People Only 
Find When They Are Not Seeking 

The stepping stones almost never resemble the final product!  
Moral: You can only find things by not looking for them 

Stepping stone to the Teapot 

Stepping stone to the Skull 

Stepping stone to Jupiter 

Stepping stone to the Penguin 

Stepping stone to the Butterfly 

Stepping stone to the Lamp 



Why? 
Deception 

(This insight is an inspiration for novelty search) 



But without Humans, What Are 
the Necessary Conditions? 

•  What conditions are essential for open-
endedness in general? 
– Hypotheses go back to Waddington (1969) 

and later Taylor (2012, 2015) 
•  Drawing on insights from population-based 

search, Soros and Staley (2014) propose 
our own 
– And that the system must generate new 

challenges as well as new ways to solve them 



Proposed Necessary Conditions 
(Soros and Stanley 2014) 

1.  A non-trivial minimal criterion (MC) to 
proliferate 

2.  Individuals create new novel 
opportunities to satisfy the MC 

3.  Individual decide for themselves with 
what or whom to interact 

4.  Ability to increase the size of the 
representation (increasing information) 
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opportunities to satisfy the MC 
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what or whom to interact 

4.  Ability to increase the size of the 
representation (increasing information) 

Coevolution, 
aka self-play 



Coevolution and Self-Play 

•  Interaction among learning agents (or 
changing components) intrinsically creates 
new challenges 

•  Long studied in the field of coevolution 
– Competitive, cooperative, test-based 
– Drawing on game theory (Pareto-coevolution) 

•  More recently called self-play 
– OpenAI Five on Dota, AlphaGo and AlphaStar 

on Go and Starcraft, etc. 

Popovici, Elena, Anthony Bucci, R. Paul Wiegand, and Edwin D. De Jong. 
"Coevolutionary principles." Handbook of natural computing (2012): 987-1033. 



Conditions+Coevolution  
Eventually Leads to  

Minimal Criterion Coevolution (MCC) 
(Brant and Stanley 2017) 

•  Abstract the necessary conditions outside 
of alife worlds 
– Minimal criterion, self-generating opportunities 
– Leverage two-population coevolution to be 

domain-general 
•  First test: Mazes and maze solvers 

Brant, Jonathan C., and Kenneth O. Stanley. "Minimal Criterion Coevolution: A New 
Approach to Open-Ended Search.“ Proceedings of the Genetic and Evolutionary 
Computation Conference (GECCO). 2017. 



Single Run MCC Results – Mazes 
and Solutions of Unbounded 

Increasing Complexity 

And, most recently, POET… 



Open-Endedness: 
We’re not Finished 

•  Field is just beginning; many challenges 
remain 
– Generating endless high-quality, diverse, and 

interesting artifacts remains a challenge 
– Killer applications remain critical for motivation 
– The measurement of success remains 

controversial and open 
•  Open-endedness is the power of creation 

– All of living nature is its product in a single run 
– When will we harness this power? 

 



A Place to Start 

•  Non-technical 
intro to field 
(2017): 
https://www.oreilly.com/
ideas/open-endedness-
the-last-grand-challenge-
youve-never-heard-of 



More Thoughts on  
Divergent Search 



• Designing training environments is hard, but critical for 
progress


• Can machine learning algorithms generate their own training 
environments?



Paired Open-Ended Trailblazer (POET)

Automatically generates both challenges and solutions

Optimizes within niches & harnesses goal switching

Rui WangRui Wang

2019





POET

easy

θ1

medium

θ2
medium 

hard

θ3

medium

θ4
medium 

hard
very 
hard

θ5 θ6

θ3′�

θ6′�

too hard

direct optimization fails
direct-path curriculum fails

ϕ1 ϕ2

ϕ4 ϕ6ϕ5

ϕ3

ϕ3



298 207 304

311 349 309



POET

• Quality Diversity++

• seeks the best agent for each niche

• also generates niches


• Open-ended?

• Definitely a step closer

• Currently limited by

• physics simulator

• environmental encoding


• Fully expressive environmental encoding: Generative Teaching 
Networks

• ICML AutoML Workshop this Friday. Petroski-Such et al. 



Automatically Generating Environments & Solutions

• Invents a curriculum

• manual attempts fail

• oven very counterintuitive (e.g. harder tasks help solve simpler ones)


• Endlessly innovates

• May be the only way to

• solve ambitious problems

• discover the full gamut of what is possible


• Captures spirit of open-ended engines of innovation

• Natural evolution

• Cultural evolution (science, technology, art)



Indirect Encoding: Representation 
in the Pursuit of Diversity 

•  When search is divergent… 
– The likely trajectories through the space of 

designs become important 
•  Regularities should be possible to 

discover, and to preserve 
•  But regularity should also be flexible and 

allow exceptions 



Therefore, Indirect Encoding 

Symmetry Repetition Repetition 
with variation 

•  Indirect encoding: “Genes” do not map directly to 
units of structure in phenotype 

•  Genetic material can be reused 
•  Development from DNA as inspiration 



Historical Precedent 
•  Turing (1952) was interested in 

morphogenesis 
– Experimented with reaction-diffusion equations 

in pattern generation 
•  Lindenmayer (1968) investigated plant 

growth 
– Developed L-systems, a grammatical rewrite 

system that abstracts how plants develop 
•  A long history of encodings 

Lindenmayer, A. (1968). Mathematical models for cellular interaction in development: Parts I and II. Journal of Theoretical 
Biology, 18, 280–299, 300–315. 
Turing, A. (1952). The chemical basis of morphogenesis. Philosophical Transactions of the Royal Society B, 237, 37–72. 

3 

Stanley, Kenneth O., and Risto Miikkulainen. "A 
taxonomy for artificial embryogeny." Artificial 
Life 9.2 (2003): 93-130. 



High-Level Abstraction: 
Compositional Pattern Producing 

Networks (CPPNs) 
•  IE suited to NNs designed to abstract how 

embryos are encoded through DNA 
(Stanley 2007) 

Symmetry Repetition Repetition 
with variation 

Kenneth O. Stanley. 
Compositional Pattern Producing Networks: A Novel Abstraction of Development In: 
Genetic Programming and Evolvable Machines Special Issue on Developmental 
Systems 8(2): 131-162.  New York, NY: Springer, 2007 



Insight: In Embryogeny, Cells Know 
Where They Are Through Chemical 

Gradients 
•  Therefore, they know who needs to do 

what, and where 
•  Because where is now defined 
•  Gradients form a coordinate frame 

(1982) 



Gradients Define Axes 

•  Chemical gradients tell which direction is 
which, which axis is which 

Y-axis X-axis 



Higher Coordinate Frames are 
Functions of Lower Ones  

( ) yyf = ( ) )(yfyg =
Using g and x as a coordinate space, we can get h: 

( ) ( )[ ]ygxfuncyxh ,, =
Symmetry from 

a symmetric 
gradient 



Gradients Can Be Composed 

•  Is there a general abstraction of 
composing gradients that we can evolve? 



Gradients Define the Body Plan 



A Novel View: 
The Phenotype as a Function of 

Cartesian Space 

•  Coordinate frames are chemical gradients 
•  Function is applied at all points 



•  A connected-graph abstraction of the 
order of and relationship between 
developmental events (no growth!) 

Compositional Pattern Producing 
Networks (CPPNs) 



Searching Over CPPNs 
•  Method (for now): NEAT (Neuroevolution 

of Augmenting Topologies) 
– Evolves NNs of increasing complexity 
– Speciation for diversity 

•  Why evolve CPPNs with NEAT? 
–  Increasing complexity allows for elaboration 

on existing patterns 



Interactive Evolution: 
A Way to Explore Encoding 



Interactive Evolution: 
A Way to Explore Encoding 



Parent 

Interactive Evolution: 
A Way to Explore Encoding 



Parent 

Interactive Evolution: 
A Way to Explore Encoding 



And  
so on… 

Parent 

Interactive Evolution: 
A Way to Explore Encoding 



Evolutionary Elaboration with 
CPPNs 



CPPNs:Repetition with Variation 

•  Seen throughout nature 
•  A simple combination of periodic  

and absolute coordinate frames bias(1.0) sin(10x) sin(10y)  d 

CPPN 













CPPN Patterns  
From http://picbreeder.org 

(All are 100% evolved: no retouching) 



The Challenge 

•  CPPNs encode spatial patterns with 
regularities 

•  It would be nice if CPPNs could 
represent networks with similar 
regularities 

•  How can CPPNs encode NNs? 



The Solution:  
Hypercube-based NEAT (HyperNEAT) 
•  Main insight: 2-D connections isomorphic to 4-D points 

–  Nodes situated in 2 spatial dimensions (x,y) 
–  Connections expressed with 4 spatial dim. (x1,y1,x2,y2) 

•  HyperNEAT extends 2-D CPPNs to 4-D (or 6-D) 
–  CPPN encodes 4-D patterns (i.e. inside a hypercube) 

•  4-D patterns can express the same regularities as 2D patterns 
•  4-D patterns interpreted as connectivity patterns 

               CPPN                                      Output                                              CPPN                                          Output 



HyperNEAT 
 

•  4-D CPPN 
–  The network evolved by HyperNEAT 

•  Substrate 
–  The NN encoded by the 4-D CPPN 
–  A function of geometry, i.e. sees the geometry 
–  Each connection is queried by the CPPN to retrieve a 

weight 



Substrates 
•  Can be configured to best 

exploit problem geometry 
–  Natural for many 

problems 
•  Input, Output, and Hidden 

nodes can be placed in 
any pattern 

•  Not restricted to 2-D 



Fundamental Regularities 
Produced by 4-D CPPNs 

Symmetry Imperfect Symmetry 

Repetition  Repetition with Variation 



Fundamental Regularities 
Produced by 6-D CPPNs 



Resolution Independence 
•  CPPN learns a 

connectivity concept, 
not individual 
connections 

•  Concepts at 5x5 and 
7x7 nodes 

•  Intuitive expansion of 
the pattern 

•  A novel capability 
•  NN can be scaled to 

higher resolutions 

5x5 7x7 CPPN 



CPPNs “See” Geometry 
•  The CPPN generates the network as a 

function of the substrate geometry 
–  Instead of building in a mechanism for 

processing geometry (e.g. convolution)… 
– Build a representation that can discover 

the mechanism! 



Multilayer Sandwich Geometry 
(e.g. in Checkers) 



Can Contain Multiple “Filters” 



Geometric Patterns Inside 
HyperNEAT Checkers NNs 

Influence Maps of more general solutions 

Influence Maps of less general solutions 
We can see 
the difference 
 

Jason Gauci and Kenneth O. Stanley (2010). Autonomous Evolution of Topographic Regularities in Artificial Neural Networks. In: 
Neural Computation journal 22(7), pages 1860-1898. Cambridge, MA: MIT Press. 



Compression and Search 
•  Why indirect encoding can succeed quickly 

– Searches a compressed space (CPPNs) 
•  Lower-dimensional 



Regularity is Fundamental to 
Real World Problems 

•  Gait generation: far more effective through 
CPPN-generated networks 

Indirect Direct 

Clune J, Stanley KO, Pennock RT, Ofria C (2011) 
On the performance of indirect encoding across the 
continuum of regularity IEEE Transactions on 
Evolutionary Computation. 15(3): 346-367 



CPPN-based NNs Are 
Differentiable 

•  Multiple realizations 
– DPPNs (differentiable pattern producing 

networks; Fernando et al. 2016) 
– Hypernetworks (Ha et al. 2016)  
– GENIE (geometrically expressive network for 

indirect encoding): coming soon with some 
surprises about convolution! 

•  Regularity in visual processing 
– e.g. convolution 



Regularity is Fundamental to 
Real World Problems 

•  CPPNs/DPPNs discovered convolution (it 
was not built in) 

•  A simple concept: 
 

•  But can indirect encoding 
discover beyond  
convolution? 
– E.g. repetition with variation 
– Like the  

“relaxed weight sharing” in LSTMs generated 
by hypernetworks 

Fernando, Chrisantha, Dylan 
Banarse, Malcolm Reynolds, Frederic 
Besse, David Pfau, Max Jaderberg, 
Marc Lanctot and Daan Wierstra. 
“Convolution by Evolution: 
Differentiable Pattern Producing 
Networks.” GECCO (2016). 

Ha, David & Dai, Andrew & V Le, Quoc. (2017). HyperNetworks. ICLR (2017)  



Alternative CPPN-like 
Encodings 

•  Wavelet-based alternative representation 
to CPPNs from Koutnik et al. 2013 

•  Encodes million-conection 
NN that learns to drive 

Koutnik, Jan and Cuccu, 
Giuseppe and Schmidhuber, 
Juergen and Gomez, Faustino (2013) Evolving 
Large-Scale Neural Networks for Vision-Based 
TORCS. In: Foundations of Digital Games, 
14-17/05/2013, Chania, Crete. 
 
 



Interesting Extensions 
•  Architecture search: describe through CPPN 
•  Substrate evolution and architecture search: Automate 

everything 
–  ES-HyperNEAT, “Deep HyperNEAT” 
 
 
 
 
 
 

•  Adaptation: CPPN as a universal learning rule 
–  CPPN(x1,y1,a1,x2,y2,a2) = delta_w:  

Universal learning rule! 
–  Rules of adaptation themselves can be spread in a pattern 

Sebastian Risi and Kenneth O. 
Stanley (2012) 
An Enhanced Hypercube-Based 
Encoding for Evolving the 
Placement, Density and 
Connectivity of Neurons. 
Artificial Life journal. Cambridge, 
MA: MIT Press, 2012. 

Felix A. Sosa and Kenneth O. Stanley (2018). Deep 
HyperNEAT: Evolving the Size and Depth of the Substrate. 
Evolutionary Complexity Research Group Undergraduate 
Research Report, University of Central Florida Department 
of Computer Science 

Risi, Sebastian, and 
Kenneth O. Stanley. "A 
unified approach to 
evolving plasticity and 
neural geometry." The 
2012 International Joint 
Conference on Neural 
Networks (IJCNN). 
IEEE, 2012. 



Looking Forward



How will we achieve our most ambitious goals?

• Our ambitious goal: AGI

• How will we get there?

• Do the lessons from this tutorial help?



Manual Path to AI

• Dominant paradigm in ML

• Phase 1: Identify key building blocks



Key Building Blocks?
• convolution 
• attention mechanisms 
• spatial tranformers 
• batch/layer norm 
• a learned loss (e.g. evolved policy gradients)   
• hierarchical RL, options 
• structural organization (regularity,  modularity,  

hierarchy)  
• intrinsic motivation (many different flavors)  
• auxiliary tasks (predictions, autoencoding, 

predicting rewards, etc.)  
• good initializations (Xavier, MAML, etc.) 
• catastrophic forgetting solutions  
• universal value functions   
• hindsight experience replay  
• LSTM cell machinery variants 
• complex optimizers (Adam, RMSprop, etc.)

• Dyna 
• variance reduction techniques  
• activation functions 
• good hyperparameters  
• capsules 
• gradient-friendly architectures (skip connections, 

highway networks) 
• value functions, state-value functions, 

advantage functions 
• recurrence (where?) 
• multi-modal fusion 
• models 
• trust regions 
• Bayesian everything 
• Active learning 
• Probabilistic models 
• Distance metrics (latent codes) 
• etc. 

how many more? 
hundreds? thousands? 
can we find them all?



Manual Path to AI

• Dominant paradigm in ML

• Phase 1: Identify key building blocks


• Phase 2: Combine building blocks into 
complex thinking machine

• Herculean task

• Is it possible?



Overall Machine Learning Trend: Learn the Solution

• Features 
• HOG/SIFT            Deep Learning      

• Architectures 
• Hand designed         Learned  

• Hyperparameters & data augmentation 
• Manually tuned         Learned 

• RL algorithms 

• Hand designed         Meta-learning

suggests alternate path



AI-Generating Algorithms

• Learn as much as possible

• Bootstrap from simple to AGI

• Expensive outer loop

• produces a sample-efficient, 

intelligent agent for inner loop

• We know it works

• occurred on Earth

Clune 2019



AI-Generating Algorithms

Three Pillars

1. Meta-learn architectures

2. Meta-learn learning algorithms

3. Generate effective learning 

environments

Clune 2019
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AI-Generating Algorithms

• May be fastest path to AGI

• Interesting even if not

• how simple processes to bootstrap 

into intelligence

• necessary, sufficient, catalyzing factors


• understand our origins

• likelihood of such processes 

occurring elsewhere in the universe

• Grand challenge of CS

Clune 2019



Conclusions



Conclusions

• Novelty Search

• Quality Diversity

• Open-Ended Search

• Indirect Encoding

Back on its feet
Using an intelligent trial-and-error learning 

algorithm this robot adapts to injury in minutes  
PAGES 426 & 503

INSIGHT
Machine  

intelligence  

T H E  I N T E R N AT I O N A L  W E E K LY  J O U R N A L  O F  S C I E N C E



Conclusions

• interesting, powerful ideas

• help solve previously unsolvable problems

• introduce entirely new types of problems


• Grand challenges

• Open-ended algorithms

• AI-generating algorithms

Back on its feet
Using an intelligent trial-and-error learning 

algorithm this robot adapts to injury in minutes  
PAGES 426 & 503

INSIGHT
Machine  

intelligence  

T H E  I N T E R N AT I O N A L  W E E K LY  J O U R N A L  O F  S C I E N C E



Conclusions

• Whether descendant or convergent, lots of these ideas are being 
hybridized with machine learning to great effect

• HER, DIAYN, Go-Explore, PBT/AlphaStar, HyperNetworks, etc.


• Potential for lots more!

• How might these ideas help with your techniques?


• Might help us achieve our most ambitious research goals



Recommended Reading

• Stanley KO, Clune J, Lehman J, Miikkulainen R (2019) Designing Neural Networks through Neuroevolution. Nature 
Machine Intelligence, 1:1, 24-35.

• Reviews most of the concepts in the tutorial and provides cites to the original papers, including: Novelty Search, 

Novelty Search with Local Competition, MAP-Elites, Intelligent Intelligent Trial & Error, Evolutionary Strategies + 
Novelty Search, Quality Diversity, Innovation Engines, CMOEA, NEAT, CPPNs, HyperNEAT, Indirect Encoding, 
Minimal criterion coevolution 


• Open-endedness: The last grand challenge you’ve never heard of. Stanley, Lehman, Soros. 2017. https://
www.oreilly.com/ideas/open-endedness-the-last-grand-challenge-youve-never-heard-of


• AI-GAs: AI-generating algorithms, an alternate paradigm for producing general artificial intelligence. (2019) Clune. 
https://arxiv.org/abs/1905.10985


• Ecoffet A, Huizinga J, Lehman J, Stanley KO, Clune J (2019) Go-Explore: a New Approach for Hard-Exploration 
Problems. arXiv 1901.10995.


• Wang R, Lehman J, Clune J, Stanley KO (2019) Paired Open-Ended Trailblazer (POET): Endlessly Generating 
Increasingly Complex and Diverse Learning Environments and Their Solutions. arXiv 1901.01753.


• Autonomous skill discovery with Quality-Diversity and Unsupervised Descriptors. Cully 2019. arXiv:1905.11874, 2019

• Why Greatness Cannot Be Planned. Stanley & Lehman. 2015.

PDFs available on our websites

https://arxiv.org/abs/1905.10985

