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Introduction and Motivation

Deep learning (DL)

The dominant machine learning methodology [Huang et al., 2017, Rajkomar et al.,
2018].

Issue: significant human effort for the labeling; considerable computational
resources for large-scale training process [Sun et al., 2017].

How to address these training issues? Two popular approaches:

1 (Pool-based) active learning (AL): Challenging to be applied in DL: AL may overfit
the (small) informative training sets

2 Data augmentation (DA): the generation of new samples is done without regarding
their informativeness =⇒ the training process takes longer than necessary and
relatively ineffective
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Introduction and Motivation

Main goals of this paper

Propose a novel Bayesian generative
active deep learning method

Targets the augmentation of the
labeled data set with informative
generated samples

Key technical contribution:
theoretically and empirically show
the informativeness of this generated
sample.

Figure 1: Our proposed method
depicted by VAE-ACGAN model
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Introduction and Motivation

Generative adversarial active learning (GAAL) [Zhu and Bento, 2017]

Relies on an optimization problem to
generate new informative samples

Can generate rich representative

training data with the assumptions:

GAN model has been
pre-trained, and

The optimization during
generation is solved
efficiently

Figure 2: Generative adversarial active
learning (GAAL) [Zhu and Bento, 2017]

Comparison between our proposed method and GAAL [Zhu and Bento, 2017]

GAAL [Zhu and Bento, 2017] Ours

acquisition function simple (binary classifier) more effective (deep models)

training of the generator (G) 2-stage G and C are jointly trained
and classifier (C) GAN model is pre-trained Allowing them to “co-evolve”

classification results not competitive enough
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Methodology Bayesian Generative Active Deep Learning

Main technical contribution:

Combining BALD and BDA for generating new labeled samples that are informative for
the training process.

Initial labeled data: D = {(xi,yi)}Ni=1, where xi ∈ X ⊆ Rd is the data sample
labeled with yi ∈ C = {1, 2, . . . , C} (C = # classes).

Bayesian active learning by disagreement (BALD) scheme [Gal et al., 2017,
Houlsby et al., 2011]:

The most informative sample x∗ is selected from the (unlabeled) pool data Dpool

by [Houlsby et al., 2011]:

x∗ = argmax
x∈Dpool

a(x,M), (1)

where the acquisition function a(x,M) is estimated by the Monte Carlo (MC)
dropout method [Gal et al., 2017]

a(x,M) ≈ −
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log
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where T is the number of dropout iterations,
p̂t = [p̂t1, . . . , p̂

t
C ] = softmax(f(x; θt)), with f is the network function

parameterized by θt ∼ p(θ|D) at the t-th iteration.
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Methodology Bayesian Generative Active Deep Learning

The generated sample x′:

x′ = g(e(x∗)), (3)

where a variational autoencoder
(VAE) [Kingma and Welling, 2013]
contains an encoder e(.) and a
decoder g(.)

VAE training: minimizing the
“reconstruction loss”, where if #
training iterations is sufficiently
large, we have:

‖x′ − x∗‖ < ε, (4)

ε > 0 (arbitrarily small) – see Fig. 3.

D ← D ∪ {(x∗,y∗), (x
′
,y∗)}, which

are used for the next training
iteration.
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Figure 3: Reduction of ‖x′ − x∗‖ as
the training progresses of the VAE
model.
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Methodology Bayesian Generative Active Deep Learning

Key Question

How about
the “information content”
of the generated sample x′

measured by a(x′,M)?

Proposition 2.1

Assuming that there exists the gradient of the acquisition function a(x,M) with respect
to the variable x, namely ∇xa(x,M), and that x∗ is an interior point of Dpool, then
a(x′,M) ≈ a(x∗,M) (i.e., the absolute difference between these values are within a
certain range). Consequently, the sample x′ generated from the most informative
sample x∗ by (3) is also informative.
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Implementation

Figure 4: Network architecture of our proposed model.
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Experiments and Results

Classification performance measured by the top-1 accuracy as a function of the
number of acquisition iterations and the percentage of training samples.

Our proposed algorithm, active learning using “information-preserving” data

augmentation (AL w. VAEACGAN) is compared with:

Active learning using BDA (AL w. ACGAN)
BALD [Gal et al., 2017] without using data augmentation (AL without
DA),
BDA [Tran et al., 2017] without active learning (BDA) (using full and
partial training sets)
Random selection

Benchmark data sets: MNIST [LeCun et al., 1998], CIFAR-10,
CIFAR-100 [Krizhevsky et al., 2012], and SVHN [Netzer et al., 2011].

Baseline classifiers: ResNet18 [He et al., 2016a] and ResNet18pa [He et al., 2016b]

Toan Tran (University of Adelaide) Long Beach, CA, USA Jun 12, 2019 9 / 13



Experiments and Results
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Figure 5: Training and classification performance of the proposed Bayesian
generative active learning (AL w. VAEACGAN) compared to other methods. This
performance is measured as a function of the number of acquisition iterations and
respective percentage of samples from the original training set used for modeling.
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Experiments and Results

Table I: Mean ± standard deviation of the classification accuracy on MNIST,
CIFAR-10, and CIFAR-100 after 150 iterations over 3 runs

MNIST
AL w. VAEACGAN AL w. ACGAN AL w. PMDA AL without DA BDA (partial training) Random selection

Resnet18 99.53± 0.05 99.45± 0.02 99.37± 0.15 99.33± 0.10 99.33± 0.04 99.00± 0.13
Resnet18pa 99.68± 0.08 99.57± 0.07 99.49± 0.09 99.35± 0.11 99.35± 0.07 99.20± 0.12

CIFAR-10
Resnet18 87.63± 0.11 86.80± 0.45 82.17± 0.35 79.72± 0.19 85.08± 0.31 77.29± 0.23

Resnet18pa 91.13± 0.10 90.70± 0.24 87.70± 0.39 85.51± 0.21 86.90± 0.27 80.69± 0.19

CIFAR-100
Resnet18 68.05± 0.17 66.50± 0.63 55.24± 0.57 50.57± 0.20 65.76± 0.40 49.67± 0.52

Resnet18pa 69.69± 0.13 67.79± 0.76 59.67± 0.60 55.82± 0.31 65.79± 0.51 54.77± 0.29

(a) MNIST (b) CIFAR-10 (c) CIFAR-100 (d) SVHN

Figure 6: Images generated by our proposed (AL w. VAEACGAN) approach for
each data set.
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Discussion and Conclusions

Consistently shows that our proposed approach outperforms other methods.

The classification results by AL w. VAEACGAN are statistically significant w.r.t.
BDA (partial training) on all those data sets, and w.r.t. AL w. ACGAN on
CIFAR-{10, 100} for both models (i.e., p ≤ .05, two-sample t-test).

Proposed a novel Bayesian generative active deep learning approach that
consistently shows to be more effective than data augmentation and active
learning in several classification problems.

Our proposed approach is (active learning) model-agnostic, it therefore can be
combined with several currently sate-of-the-art active learning methods [Ducoffe
and Precioso, 2018, Gissin and Shalev-Shwartz, 2018, Sener and Savarese, 2018].

Future work

To investigate how to generate samples directly using complex acquisition functions

To work on the efficiency of our proposed method (its empirical computational
cost is slightly higher than BDA [Tran et al., 2017] and BALD [Gal et al., 2017,
Houlsby et al., 2011]).

Imbalanced data sets
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Discussion and Conclusions

Poster presentation:
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