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1- Setup



B 4@
The generic SG algorithm

The SG algorithm produces successive iterates wy, € R%
with the goal to minimize a certain function F : R¢ - R.

We assume that we have access to three mechanisms

1. Given an iterationnumber k ,
a mechanism to generate a realization of a random variable &.
The {&,} form a sequence of jointly independent random variables

2. Given an iterate wy, and a realization &,
a mechanism to compute a stochastic vector g (wy, &) € R?

3. Given an iteration number,
a mechanism to compute a scalar stepsize a; > 0



B 4@
The generic SG algorithm

Algorithm 4.1 (Stochastic Gradient (SG) Method)

1: Choose an initial iterate wj.

2: for k=1,2,... do

3: Generate a realization of the random variable &.
4 Compute a stochastic vector g(wg, & ).

5 Choose a stepsize oy > 0.

6: Set the new iterate as w1 < wr — arg(wg, ).
7: end for



B 4@
The generic SG algorithm

The function F : R - R could be

B R(w) = E[f(w; &)] the expected risk,
(w)= Ry (w) = %22:1 f(w; &)  the empirical risk.

The stochastic vector could be

. V £ (wy; &) the gradient for one example,

1 &
— V f(w; &k4) the gradient for a minibatch
g(wg, k) = ¢ Tk ; S ’

1 &
Hiy— ZVf(wk; ki), possibly rescaled
L RS



B 4@
The generic SG algorithm

Stochastic processes

» We assume that the {&} are jointly independent to avoid the full
machinery of stochastic processes. But everything still holds if the {&}}
form an adapted stochastic process, where each &, can depend on the
previous ones.

Active learning
* We can handle more complex setups by view &, as a “random seed”.
For instance, in active learning, g (wy, &) firsts construct a multinomial

distribution on the training examples in a manner that depends on wy,,
then uses the random seed ¢, to pick one according to that distribution.

The same mathematics cover all these cases.



2- Fundamental lemmas



Smoothness

Smoothness

* Our analysisrelies on a smoothness assumption.
We chose this path because it also gives results for the nonconvex case.
We’ll discuss other paths in the commentary section.

[Assumption 4.1 (Lipschitz-continuous gradients). The ob-
jective function F : R? — R is continuously differentiable and
its gradient, VF : R* — R%, is Lipschitz continuous with Lipschitz
constant L > 0, i.e.,

|VF(w) — VF(w)||2 < L||lw — @2 for all {w,w} C R

\_ J

Well known consequence

F(w) < F(w) + VF(w)"(w —w) + L|lw — w||3 for all {w,w} CR%  (4.3)




Smoothness

* Eg, | ] isthe expectation with respect to the distribution of §; only.
* E¢, [F(Wk41)] is meaningful because wy,, depends on & (step 6 of SG)

(Lemma 4.2. Under Assumption /.1, the iterates of SG (Algorithm 4.1) N
satisfy the following inequality for all k € N:

B¢, [F(wk41)] — F(wg)
< _akVF('wk)T]EEk [g(wkvgk)] + %Q%LEEk[”g(wkagk)”g] (44)

G A AN J
| N

L Expected decrease J Noise
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Smoothness

(" )

Lemma 4.2. Under Assumption 4.1, the iterates of SG (Algorithm 4.1)
satisfy the following inequality for all k € N:

Eg, [F(wr1)] = F(wy)
< —akVF(wr)" B, [g(wr, &)] + 30k LEe, [[lg(we, &)lIZ]-  (4-4)

\_ J

Proof. By Assumption 4.1, the iterates generated by SG satisfy

F(wg+1) — F(wi) < VF(wi)" (w1 — wi) + 5L w1 — wil|3
< —ax VF(wi)" g(wk, &) + 2ai L g(wk, &x)||5-

Taking expectations in these inequalities with respect to the distribution
of &, and noting that wg41—but not wx—depends on &k, we obtain the
desired bound. ]
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Moments

4 )

Assumption 4.3 (First and second moment limits). The objective
function and SG (Algorithm 4.1) satisfy the following:

(a) The sequence of iterates {wy} is contained in an open set over which
F' is bounded below by a scalar Fs.

(b) There ezist scalars pg > > 0 such that, for all k € N,

VF (w)" Eg,[g(wk, &)] 2 p||VF (wg)3 and (4.72)
1B, [9(wr, Ex)lll2 < pallVE (wr)]|2- (4.7b)

(c) There ezist scalars M > 0 and My > 0 such that, for all k € N,

Ve, [9(wr, &)] < M + My | VF (wg)|2- (4.8)

\_ J
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Moments

(b) There exist scalars pg > p > 0 such that, for all k € N,

VF (wi)" Eg, [9(wk, k)] > pl| VF (wk)|3 and (4.72)
1B, [9(wr, Ex)lll2 < pallVE (wr)]|2- (4.7D)

(c) There exist scalars M > 0 and My such that, for all k € N,

Ve lg(wr, &) < M (wi)l3- (4.8)

| N

4 N

* In expectation g (wy, &) is a sufficient descent direction.
* Trueif Eg [g(Wk, k)] = VF (wy) withu = pg = 1.

* True if B¢, [g(wk, k)] = HVF (wy) with bounded spectrum.
k /13
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Moments

(b) There exist scalars pg > p > 0 such that, for all k € N,

VF (wi)" Eg, [9(wk, k)] > pl| VF (wk)|3 and (4.72)
1B, [9(wr, Ex)lll2 < pallVE (wr)]|2- (4.7D)

(c) There exist scalars M > 0 and My > 0 such that, for all k € N,

Ve, lg(wr, &) < M + My || VF (wg)|3- (4.8)
x A y

A

* Vg [ ] denotes the variance w.r.t. &

* Variance of the noise must be bounded 1n a mild manner.
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Moments

(b) There exist scalars pg > p > 0 such that, for all k € N,

VF (wi)" Eg, [9(wk, &)] 2 pllVF(wi)|3 and (4.72)
[Ee, [g(wr, €x)lll2 < pallVE (w)||2- (4.7D)

(c) There exist scalars M > 0 and My > 0 such that, for all k € N,

Ve lg(wr, &6)] < M + My || VF (wg)5 (4.8)
. y

* Combining (4.7b) and (4.8) gives
Ee, [l9(wk, &)l|3] < M + Mc||[VF (w)|3 (4.9)
with MG = MV -f-,u%; > ,LL2 > 0.
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Moments
4 )
Lemma 4.4. Under Assumptions 4.1 and /.3, the iterates of SG (Algo-
rithm 4.1) satisfy the following inequalities for all k € N:
Ee, [F(wk+1)] — F(wg)
< —pak||VE(wi)|3 + 504 LE¢, [[lg(we, &)ll3]  (4.10a)
< —(p— taxLMg)og||VF(wk)|3 + s02LM.  (4.10b)
L /\\ /\\ J
[ Expected decrease J Noise J

* The convergence of SG depends on the balance between these two terms.
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Moments
4 h
Lemma 4.4. Under Assumptions 4.1 and 4.3, the iterates of SG (Algo-
rithm 4.1) satisfy the following inequalities for all k € N:
Ee, [F(wk+1)] — F(wg)
< —pon | VF (we) |3 + Jo2LEe, [lg(we, )2 (4.108)
< —(u— SaxLMg)ay|VF(wk)||3 + 2a2LM.  (4.10b)
L J

Proof. By Lemma 4.2 and (4.7a), it follows that

Ee, [F(wi+1)] — F(wi) < —oxVF(wi)" Ee, [g(wk, &)] + 30k LEe, [||g(wg, &) |13]
< —pag||VF(wg)|3 + 302 LE¢, [||g(wk, &) |13];

which is (4.10a). Assumption 4.3, giving (4.9), then yields (4.10b). O
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3- SG for Strongly Convex Objectives
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Strong convexity

( )
Assumption 4.5 (Strong convexity). The objective function F : R — R

is strongly convex in that there exists a constant ¢ > 0 such that for all
(w,w) € R% x R?

F(w) > F(w) + VF(w)" (@ — w) + Lc[|w —wl]3. (4.11)

Hence, F' has a unique minimizer, denoted as ws € R% with Fy := F(w,).
. J

Known consequence

2¢(F(w) — F,) < |VF(w)|? for all w € R<. (4.12)

Why does strong convexity matter?

* It gives the strongest results.

* It often happens in practice (one regularizes to facilitate optimization!)

* It describes any smooth function near a strong local minimum. .



B 4@
Total expectation

Different expectations
* E¢ [ |1isthe expectation with respect to the distribution of & only.
« [E[ | isthe total expectation w.r.t. the joint distribution of all &.

For instance, since wy, depends only on &4,¢&5,...,¢k_1,

E[F(wy)] = Eg Eg, ..Eg,_ [F(wy)]

Results in expectation

* We focus on results that characterize the properties of SG in expectation.

* The stochastic approximation literature usually relies on rather complex
martingale techniques to establish almost sure convergence results. We
avoid them because they do not give much additional insight.

20



SG with fixed stepsize

Theorem 4.6 (Strongly Convex Objective, Fixed Stepsize). Under
Assumptions 4.1, 4.3, and 4.5 (with Fins = Fyx ), suppose that the SG method
(Algorithm /.1) is run with a fizved stepsize, ay = @ for all k € N, satisfying

0<a< LJ‘\}G. (4.13)

Then, for all k € N the expected optimality gap satisfies :

ALM _ ALM
BiF(u) — ] < Gt + (- aew* ™ (Plwy) - . - G0 )
2cu 2cu (4.14)
k:—)oo\ alLM .
[4 20“ .

* Only converges to a neighborhood of the optimal value.
* Both (4.13) and (4.14) describe well the actual behavior.

21



B 4@
SG with fixed stepsize (proof)

Proof. Using Lemma 4.4 with (4.13) and (4.12), we have for all k € N that

E¢, [F(wi+1)] — F(wi)] < —(p — 3aLMe)a||VE (w3 + 56°LM
< —lap|VF(w)|3+ sa°LM
< —acu(F(wy) - F.) + 3a®LM.

Subtracting F, from both sides and taking total expectations,
E[F(wis1) — Fu] < (1 — Gew)E[F (wi) — F] + 2aLM.
Subtracting the constant aLM/(2cu) from both sides, one obtains
aLM
2cu

alLM

EF (wers) = Fu] - o

< (1 — acp) (]E[F('wk) — Fy| — ) . (4.15)

Observe that (4.15) is a contraction inequality since, by (4.13) and (4.9),

2

2
Clt cu c
< <o ="<1 4.16
0<acp< LMg — Lp2 L= (4.16)

The result thus follows by applying (4.15) repeatedly. O
22



B 4@
SG with fixed stepsize

alL M
2cu

aLM

E[F(wg) — Fy] < 20

+ (1 — acp) (F(wl) — F, — ) (4.14)

Note the interplay between the stepsize @ and the variance bound M.
* [f M = 0, one recovers the linear convergence of batch gradient descent.

* [f M > 0, one reaches a point where the noise prevents further progress.

23



Diminishing the stepsizes

21‘
2
L3

* If we wait long enough, halving the stepsize a eventually halves F(wy) — F*.

* We can even estimate F* =~ 2Fy , — Fy

24



Diminishing the stepsizes faster

Divide a by 2 whenever E[F (w;,) — F*] reaches 2 %.

]E[F(Wk)l

F*

* Divide a by 2 whenever E[F(wy )] reaches aLM/cp.
 Time 7, between changes : (1 — acu)’™ =1/3 meanst, < 1/a.
* Whenever we halve a we must wait twice as long to halve F (w) — F*.

 Overall convergence ratein 0 (1/k).

25



SG with diminishing stepsizes

4 )

Theorem 4.7 (Strongly Convex Objective, Diminishing Stepsizes).
Under Assumptions 4.1, 4.3, and 4.5 (with Fins = Fx), suppose that SG
(Algorithm /.1) is run with a stepsize sequence such that, for all k € N,

1
— fy% for some [ > o and v>0 st o < LJIL\ZG' (4.18)

g

Then, for all k € N, the expected optimality gap satisfies

E[F(ws) — F] < (4.19)
where LM
V= maX{Z(Bcu— 1),(7+1)(F(w1) —F*)} (4.20)

\_ J
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SG with diminishing stepsizes

( Theorem 4.7 (Strongly Convex Objecti )
. . 1, 4.8, and 4.5 (with T 5 G
Stepsize decreasesin 1/k p, qith o stepsize sequence such that, fo k € N,
— z )
ap = T for some [ > ” and v>0 st o < Mo (4.18)
, the expected optimality gap satisfies
[ Not too slow... y
E[F(wy) — F,] < : 4.19
Flu) - F< (4.19)
where LM
v .= max (v + 1) (F(w : 4.20
\ G, (r D () (4.20)

[ ...otherwise |

L gap X stepsize }

27



B 4@
SG with diminishing stepsizes (proof)

Proof. Proceeding as in the proof of Theorem 4.6, one gets
E[F(wikt1) — F] < (1 — akep)E[F (wg) — Fi] + 303 LM. (4.21)

We now prove (4.19) by induction. First, the definition of v ensures that
it holds for £k = 1. Then, assuming (4.19) holds for some k > 1, it follows
from (4.21) that

Be )V B2LM s
E|F(w —F | <{|1-— =+ — with k:=~v+ k
Pl - < (1-52) 24 220 ¢ T+ E)

E—1 —1 2LM
P P
k2 \ k2 2k2 T k+1

TV
nonpositive by the definition of v

where the last inequality follows because k2 > (k + 1)(k —1). O
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Mini batching
V f(wk; €k) 1 M
g(wkvfk) = 1 —
o 2t VI (W €k i) Mmb M /N

Using minibatches with stepsize @ :

aLM o aLM
E|F —F,| < 1— F — F, — :
Plu) ~ F < g+ 1= aeul ™ (Flun) = P - 500
Using single example with stepsize & / nyyp, :
_ _ 1k—1 _
E[F(wy) — F.] < 2EM |y _ o Flw)—F, — MY
20/1' Mmb Mmb 26/1' Mmb

{ nyp times more iterations that are ny,;, times cheaper. } same
29




B 4@
Minibatching

Ignoring implementation issues

* We can match minibatch SG with stepsize @
using single example SG with stepsize @ / npyp, -

* We can match single example SG with stepsize a
using minibatch SG with stepsize @ X nyy,
provided & X n,p 1s smaller than the max stepsize.

With implementation issues

* Minibatch implementations use the hardware better.
* Especially on GPU.

30



4- SG for General Objectives
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Nonconvex objectives

Nonconvex training objectives are pervasive in deep learning.

Nonconvex landscape in high dimension can be very complex.

* Critical points can be local minima or saddle points.

* Critical points can be first order of high order.

* Critical points can be part of critical manifolds.

* A critical manifold can contain both local minima and saddle points.

We describe meaningful (but weak) guarantees
* Essentially, SG goes to critical points.

The SG noise plays an importantrole in practice

* It seems to help navigating local minima and saddle points.
* More noise has been found to sometimes help optimization.
* But the theoretical understanding of these facts is weak.

32



Nonconvex SG with fixed stepsize

Gheorem 4.8 (Nonconvex Objective, Fixed Stepsize). Under Assum, —\
tions 4.1 and 4.3, suppose that the SG method (Algorithm 4.1) is run with a
fized stepsize, o = @ for all k € N, satisfying

0<a< ﬁ (4.25)

Then, the expected sum-of-squares and average-squared gradients of F' corre-
sponding to the SG iterates satisfy the following inequalities for all K € N:

KaLM N 2(F(w1) — Fint)

y G (4.26a)

) _
4 {z VEwOI2] <
k=1 d

K _
LS VPG| < 22 2E@) = Fin) -, o

7 Kua
/

33
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Nonconvex SG with fixed stepsize

(I‘heorem 4.8 (Nonconvex Objecti
tions 4.1 and 4.3, suppose that the S
fized stepsize, ap = @ for all k € N, sa

N

If the average norm of the
gradient is small, then the

~

L . (] N rT b |

0<a<

b
<z (4.25)

of-squares and aver 096-[ This goes to zero like 1/K
ates satisfy the followin

r Assump-
Same max stepsize run with a

norm of the gradient cannot
be often large...

- L This does not 1‘ (w)
- w1
HVF K/ Z

A

and therefore E % IVF(wg)||3

_ _

M=

3
I
—

7’ Kua




Nonconvex SG with fixed stepsize (proof)

Proof. Taking the total expectation of (4.10b) and from (4.25),
B[P (wps1)] — E[F ()] < — (1 — 36LMg)GE[|VF (wy) 2] + La2LM

— g HGE[|VE (wg)|2] + 36°LM.

Summing both sides of this inequality for £ € {1,...,K} and recalling As-
sumption 4.3(a) gives

>'\'

Fint — F(w1) <E[F(wit1)] = F(w1) < —gpa ) E[|VF(wy)|3] + 3Ka°LM.
k=1

Rearranging yields (4.26a), and dividing further by K yields (4.26b). O
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Nonconvex SG with diminishing step sizes

/ Theorem 4.10 (Nonconvex Objective, Diminishing Stepsizes). Under\
Assumptions 4.1 and 4.3, suppose that the SG method (Algorithm 4.1) is run
with a stepsize sequence satisfying

Sar=oo 3 al<oo,
k=1 k=1
then
K
E ZakHVF(wk)H%] < 00
\_ = Y,
r N

Corollary 4.12. Under the conditions of Theorem 4.10, if we further assume
that the objective function F' is twice differentiable, and that the mapping w —>
|VF(w)||3 has Lipschitz-continuous derivatives, then

lim E[||VF(wg)||3] = 0.
k—o0




5- Work complexity for Large-Scale Learning
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Large-Scale Learning

Assume that we are in the large data regime
* Training data is essentially unlimited.
* Computationtime 1s limited.

The good

* More training data = less overfitting
* Less overfitting = richer models.

The bad
 Using more training data or rich models quickly exhausts the time budget.

The hope
* How thoroughly do we need to optimize R, (w)
when we actually want another function R(w) to be small ?
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Expected risk versus training time

-

Expected Risk

10,000 examples

100,000 examples
1,000,000 examples
Bayes Limit

.
Computing Time

* When we vary the number of examples
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Expected risk versus training time

\ optimizer a
optimizer b
optimizer ¢

model |
model Il
model Il
model IV

Expected Risk

10,000 examples

100,000 examples
1,000,000 examples
—————————————————————————— Bayes Limit

.
Computing Time

* When we vary the number of examples, the model, and the optimizer...
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Expected risk versus training time

optimizer a
optimizer b
optimizer ¢

model |
model Il
model Il
model IV

Expected Risk

Good
combinations

10,000 examples

100,000 examples

1,000,000 examples
————————————————————————— Bayes Limit

.
Computing Time

* The optimal combination depends on the computing time budget
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Formalization

The components of the expected risk

E[R(dn)] = R(w.) + E[R(wn) — R(w.)] + ER(@) — R(wa)]  (4.29)
gapp(H) 8est (H, TL) 8opt (H, n, 6)

Question

* Given a fixed model H and a time budget 7y, ,%, choose n, €...

min £(n,€) = E[R(W,) — R(wy)] s.t. T(n,€) < Thax- (4.30)

n,€

Approach
e Statisticstellus .4 (n) decreases with a rate inrange 1/\/n ... 1/n.

* For now, let’s work with the fastest rate compatible with statistics

1
E(n,e) ~ —te (4.32)
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.. 4@
Batch versus Stochastic

Typical convergence rates
* Batch algorithm: T (n,€) ~nlog(1l/e)
* Stochastic algorithm: 7T(n,e) ~ 1/n

Rate analysis

Batch Stochastic / , \
PI‘OCGSSlng morc

T(ne) ~ nlog (1) 1 training examples beats
, € € optimizing more
) T thoroughly.
n ~ log(Toed) Tmax
e This effect only grows
o _ 10g(Tmax) N 1 1 if £,5¢(n) decreases

Tmax Tmax Tmax slower than 1/n. /
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6- Comments
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Asymptotic performance of SG 1s fragile

Diminishing stepsizes are tricky
* Theorem 4.7 (strongly convex function) suggests

B SG converges very
N : 1
O = Ntk slowly1fﬁ<a

SG usually diverges

2u

when a 1s above —
LMg

Constant stepsizes are often used in practice

* Sometimes with a simple halving protocol.




Condition numbers

L M

The ratios — and — appear in critical places
c c

* Theorem 4.6. With u = 1, My, = 0, the optimal stepsizeis a = %
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Distributed computing

SG is notoriously hard to parallelize
* Because 1t updates the parameters w with high frequency

* Because it slows down with delayed updates.

SG still works with relaxed synchronization

* Because thisis justa little bit more noise.

Communication overhead give room for new opportunities
* There is ample time to compute things while communication takes place.
* Opportunity for optimization algorithms with higher per-iteration costs

-> SG may not be the best answer for distributed training.
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Smoothness versus Convexity

Analyses of SG that only rely on convexity

 Bounding ||w, — w*||? instead of F(wy) — F*
and assuming E¢, [g(wg, §i)] = G(wy) € OF (wy)
gives a result similar to Lemma 4.4.

Eg, [[[wk1 — wal[3] — lwe — w3
= —2ax(wr)" (wk — wi) + e[|l g(wk, &) 3], (A.2)

[—Exic\ted decrease ] [—/\Noise ]

* Ways to bound the expected decrease

General convexity :  §(wg)T (wy — wy) > F(wg) — F(w,) >0

Strong convexity :  §(wg)T (wr — wy) > c||wr — ws||? >0

* Proof does not easily support second order methods.
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