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1- Setup
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The generic SG algorithm

The SG algorithm produces successive iterates 𝑤" ∈ 	
  ℝ&
with the goal to minimize a certain function 𝐹 ∶ ℝ& → ℝ.

We assume that we have access to three mechanisms
1. Given an iteration number 𝑘	
  ,

a mechanism to generate a realization of a random variable 𝜉".
The 𝜉" form a sequence of jointly independent random variables

2. Given an iterate 𝑤" and a realization 𝜉", 
a mechanism to compute a stochastic vector 𝑔 𝑤", 𝜉" ∈ ℝ&

3. Given an iteration number,
a mechanism to compute a scalar stepsize 𝛼" > 0
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The generic SG algorithm

Algorithm 4.1 (Stochastic Gradient (SG) Method)
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The generic SG algorithm

The function 𝐹 ∶ ℝ& → ℝ could be

The stochastic vector could be

the gradient for one example,

the empirical risk.

the gradient for a minibatch,

possibly rescaled

the expected risk,
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The generic SG algorithm

Stochastic processes

• We assume that the 𝜉" are jointly independent to avoid the full 
machinery of stochastic processes.  But everything still holds if the 𝜉"
form an adapted stochastic process, where each 𝜉" can depend on the 
previous ones.

Active learning

• We can handle more complex setups by view 𝜉" as a “random seed”.
For instance, in active learning, 𝑔(𝑤", 𝜉") firsts construct a multinomial 
distribution on the training examples in a manner that depends on 𝑤", 
then uses the random seed 𝜉" to pick one according to that distribution.

The same mathematics cover all these cases.
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2- Fundamental lemmas
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Smoothness

Smoothness
• Our analysis relies on a smoothness assumption.

We chose this path because it also gives results for the nonconvex case.
We’ll discuss other paths in the commentary section.

Well known consequence
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Smoothness

• 𝔼45 is the expectation with respect to the distribution of 𝜉" only.
• 𝔼45 𝐹(𝑤"67) is meaningful because 𝑤"67 depends on 𝜉" (step 6 of SG)

Expected  decrease Noise
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Smoothness
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Moments
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Moments

• In expectation 𝑔(𝑤", 𝜉") is a sufficient descent direction.
• True if 𝔼45 𝑔(𝑤", 𝜉") = 𝛻𝐹 𝑤" with 𝜇 = 𝜇; = 1.
• True if 𝔼45 𝑔(𝑤", 𝜉") = 𝐻"𝛻𝐹(𝑤") with bounded spectrum. 
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Moments

• 𝕍45 denotes the variance w.r.t. 𝜉"
• Variance of the noise must be bounded in a mild manner.
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Moments

• Combining (4.7b) and (4.8) gives

with 
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Moments

• The convergence of SG depends on the balance between these two terms. 

Expected  decrease Noise
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Moments
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3- SG for Strongly Convex Objectives
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Strong convexity

Known consequence

Why does strong convexity matter?
• It gives the strongest results.
• It often happens in practice  (one regularizes to facilitate optimization!)
• It describes any smooth function near a strong local minimum.
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Total expectation

Different expectations
• 𝔼45 is the expectation with respect to the distribution of 𝜉" only.
• 𝔼 is the total expectation w.r.t. the joint distribution of all 𝜉".

For instance, since 𝑤" depends only on 𝜉7, 𝜉?,… , 𝜉"A7,

𝔼 𝐹 𝑤" =	
   𝔼4B𝔼4C …𝔼45DB[𝐹 𝑤" ]

Results in expectation 

• We focus on results that characterize the properties of SG in expectation.

• The stochastic approximation literature usually relies on rather complex 
martingale techniques to establish almost sure convergence results. We 
avoid them because they do not give much additional insight.
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SG with fixed stepsize

• Only converges to a neighborhood of the optimal value.
• Both (4.13) and (4.14) describe well the actual behavior.
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SG with fixed stepsize (proof)
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SG with fixed stepsize

Note the interplay between the stepsize𝛼G and the variance bound 𝑀.
• If 𝑀 = 0, one recovers the linear convergence of batch gradient descent.
• If 𝑀 > 0, one reaches a point where the noise prevents further progress.
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Diminishing the stepsizes

• If we wait long enough, halving the stepsizeα eventually halves 𝐹 𝑤" − 𝐹∗.
• We can even estimate 𝐹∗ ≈ 2𝐹N/? − 𝐹N

k

𝐹
𝑤 "

Stepsize α

Stepsize α/2

𝐹∗

=    
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Diminishing the stepsizes faster

• Divide 𝛼 by 2 whenever 𝔼 𝐹 𝑤" reaches 𝛼𝐿𝑀/𝑐𝜇.
• Time 𝜏S between changes : 1 − 𝛼𝑐𝜇 TU = 1/3 means 𝜏S ∝ 1/𝛼.
• Whenever we halve 𝛼 we must wait twice as long to halve 𝐹(𝑤) − 𝐹∗.
• Overall convergence rate in 𝒪 1 𝑘⁄ .

k

𝔼
𝐹
𝑤 "

𝐹∗

α

α/2

α/4
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Divide 𝛼 by 2 whenever 𝔼 𝐹 𝑤" − 𝐹∗ reaches 2S[\?]^ .



SG with diminishing stepsizes
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SG with diminishing stepsizes
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Same maximal stepsize

Stepsize decreases in 1/k

Not too slow…

gap ∝ stepsize…otherwise



SG with diminishing stepsizes (proof)
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Mini batching

Using minibatches with stepsize𝛼G :

Using single example with stepsize𝛼G	
  /	
  𝑛`a :
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Computation Noise

1 𝑀

𝑛`a 𝑀/𝑛`a

𝑛`a times more iterations that are 𝑛`a times cheaper. same



Minibatching

Ignoring implementation issues
• We can match minibatch SG with stepsize𝛼G

using single example SG with stepsize𝛼G	
  /	
  𝑛`a .
• We can match single example SG with stepsize 𝛼G

using minibatch SG with stepsize 𝛼G	
  ×	
  𝑛`a
provided 𝛼G	
  ×	
  𝑛`a is smaller than the max stepsize.

With implementation issues
• Minibatch implementations use the hardware better.
• Especially on GPU.
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4- SG for General Objectives
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Nonconvex objectives

Nonconvex training objectives are pervasive in deep learning.

Nonconvex landscape in high dimension can be very complex.
• Critical points can be local minima or saddle points.
• Critical points can be first order of high order.
• Critical points can be part of critical manifolds.
• A critical manifold can contain both local minima and saddle points.

We describe meaningful (but weak) guarantees
• Essentially, SG goes to critical points.

The SG noise plays an important role in practice
• It seems to help navigating local minima and saddle points.
• More noise has been found to sometimes help optimization.
• But the theoretical understanding of these facts is weak.
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Nonconvex SG with fixed stepsize
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Nonconvex SG with fixed stepsize
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Same max stepsize

This goes to zero like 1/K

This does not

If the average norm of the 
gradient is small, then the 

norm of the gradient cannot 
be often large…



Nonconvex SG with fixed stepsize (proof)
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Nonconvex SG with diminishing step sizes
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5- Work complexity for Large-Scale Learning
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Large-Scale Learning

Assume that we are in the large data regime
• Training data is essentially unlimited.
• Computation time is limited.

The good
• More training data ⇒ less overfitting
• Less overfitting ⇒ richer models.

The bad
• Using more training data or rich models quickly exhausts the time budget.

The hope
• How thoroughly do we need to optimize 𝑅d(𝑤)

when we actually want another function 𝑅(𝑤) to be small ?
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Expected risk versus training time

• When we vary the number of examples

39

Ex
pe
ct
ed
  R
is
k



Expected risk versus training time

• When we vary the number of examples, the model, and the optimizer…
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Expected risk versus training time

• The optimal combination depends on the computing time budget
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Formalization

The components of the expected risk

Question
• Given a fixed model ℋ and a time budget 𝒯 gh, choose 𝑛, 𝜖…

Approach
• Statistics tell us ℰklm(𝑛) decreases with a rate in range 1/ 𝑛� … 1/𝑛.
• For now, let’s work with the fastest rate compatible with statistics
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Batch versus Stochastic

Typical convergence rates
• Batch algorithm:
• Stochastic algorithm:

Rate analysis
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Processing more 
training examples beats 

optimizing more 
thoroughly.

This effect only grows 
if ℰklm(𝑛) decreases 

slower than 1/𝑛.  



6- Comments
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Asymptotic performance of SG is fragile

Diminishing stepsizes are tricky
• Theorem 4.7 (strongly convex function) suggests

Constant stepsizes are often used in practice
• Sometimes with a simple halving protocol.
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SG converges very 
slowly if  𝛽 < 7

]^

SG usually diverges 
when 𝛼 is above ?^[\q



Condition numbers

The ratios 
𝑳
𝒄

and 
𝑴
𝒄

appear in critical places

• Theorem 4.6.  With	
  𝜇 = 1, 𝑀x = 0, the optimal stepsize is 𝛼G = 7
[
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Distributed computing

SG is notoriously hard to parallelize
• Because it updates the parameters 𝑤	
  with high frequency
• Because it slows down with delayed updates.

SG still works with relaxed synchronization
• Because this is just a little bit more noise.

Communication overhead give room for new opportunities
• There is ample time to compute things while communication takes place.
• Opportunity for optimization algorithms with higher per-iteration costs 
➔ SG may not be the best answer for distributed training.
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Smoothness versus Convexity

Analyses of SG that only rely on convexity
• Bounding 𝑤" −𝑤∗ ? instead of  𝐹 𝑤" − 𝐹∗

and assuming 𝔼45 𝑔(𝑤", 𝜉") = 𝑔y 𝑤" ∈ 𝜕𝐹(𝑤")
gives a result similar to Lemma 4.4.

• Ways to bound the expected decrease

• Proof does not easily support second order methods.
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Expected decrease Noise


