

Mining Large Graphs: Patterns, Anomalies, and Fraud Detection

Christos Faloutsos
CMU

Thank you!

• Nina Balcan

• Kilian Weinberger

Roadmap

- Introduction Motivation
 - Why study (big) graphs?

Conclusions

~1B nodes (web sites)

~6B edges (http links)

'YahooWeb graph'

ICML'16 (c) 2016, C. Faloutsos 4

>\$10B; ~1B users

ICML'16

Internet Map [lumeta.com]

Food Web [Martinez '91]

6

- web-log ('blog') news propagation YAHOO! BLOG
- computer network security: email/IP traffic and anomaly detection
- Recommendation systems

•

Many-to-many db relationship -> graph

Motivating problems

• P1: patterns? Fraud detection?

• P2: patterns in time-evolving graphs /

tensors

Motivating problems

• P1: patterns? Fraud detection?

destination source time

Motivating problems

• P1: patterns? Fraud detection?

• P2: patterns in time-evolving graphs / tensors

* Robust Random Cut Forest Based Anomaly Detection on Streams Sudipto Guha, Nina Mishra, Gourav Roy,

Okka Cabrillyara ICMI 146

Roadmap

- Introduction Motivation
 - Why study (big) graphs?

- Part#1: Patterns & fraud detection
- Part#2: time-evolving graphs; tensors
- Conclusions

ICML'16

Part 1: Patterns, & fraud detection

Laws and patterns

• Q1: Are real graphs random?

Laws and patterns

- Q1: Are real graphs random?
- A1: NO!!
 - Diameter ('6 degrees'; 'Kevin Bacon')
 - in- and out- degree distributions
 - other (surprising) patterns
- So, let's look at the data

• Power law in the degree distribution [Faloutsos x 3 SIGCOMM99]

internet domains

ICML'16 (c) 2016, C. Faloutsos 15

• Power law in the degree distribution [Faloutsos x 3 SIGCOMM99]

internet domains

ICML'16 (c) 2016, C. Faloutsos 16

• Q: So what?

internet domains

ICML'16

- Q: So what? = friends of friends (F.O.F.)
- A1: # of two-step-away pairs: internet domains

ICML'16

• Q: So what? = friends of friends (F.O.F.)

• A1: # of two-step-away pairs: 100² * N= 10 Trillion

ICML'16

internet domains

ICML'16

Trillion

Gaussian trap

Solution# S.1

= friends of friends (F.O.F.)

• Q: So what?

• A1: # of two-step-away pairs: O(d max 2) $\sim 10M^2$

internet domains

~0.8PB -> a data center(!)

Gaussian trap

Solution# S.1

ICML'16

• $O(N^2)$ algorithms are ~intractable - N=1B

• N^2 seconds = 31B years (>2x age of

universe)

1B

1B

ICML'16

• $O(N^2)$ algorithms are ~intractable - N=1B

31M

- N^2 seconds = 31B years
- 1,000 machines

ICML'16

• $O(N^2)$ algorithms are ~intractable - N=1B

31K

- N^2 seconds = 31B years
- 1M machines

• $O(N^2)$ algorithms are ~intractable - N=1B

3

• N^2 seconds = 31B years

• 10B machines ~ \$10Trillion

• $O(N^2)$ algorithms are ~intractable - N=1B

And parallelism might not help

• N^2 seconds = 31B years

• 10B machines ~ \$10Trillion

28

Solution# S.2: Eigen Exponent E

• A2: power law in the eigenvalues of the adjacency matrix ('eig()')

ICML'16 (c) 2016, C. Faloutsos

Roadmap

- Introduction Motivation
- Part#1: Patterns in graphs

- Patterns: Degree; Triangles
- Anomaly/fraud detection
- Graph understanding
- Part#2: time-evolving graphs; tensors
- Conclusions

Solution# S.3: Triangle 'Laws'

• Real social networks have a lot of triangles

ICML'16 (c) 2016, C. Faloutsos 30

Solution# S.3: Triangle 'Laws'

- Real social networks have a lot of triangles
 - Friends of friends are friends
- Any patterns?
 - 2x the friends, 2x the triangles?

ICML'16

Triangle Law: #S.3 [Tsourakakis ICDM 2008]

Triangle Law: Computations

[Tsourakakis ICDM 2008]

But: triangles are expensive to compute

(3-way join; several approx. algos) – $O(d_{max}^2)$

Q: Can we do that quickly?

A:

ICML'16

details

 $\mathbf{A} \mathbf{x} = \lambda \mathbf{x}$

Triangle Law: Computations

[Tsourakakis ICDM 2008]

But: triangles are expensive to compute

(3-way join; several approx. algos) – $O(d_{max}^2)$

Q: Can we do that quickly?

A: Yes!

#triangles = 1/6 Sum (λ_i^3)

(and, because of skewness (S2),

we only need the top few eigenvalues! - O(E)

Triangle counting for large graphs?

Anomalous nodes in Twitter(~ 3 billion edges)

[U Kang, Brendan Meeder, +, PAKDD'11]

ICML'16

Triangle counting for large graphs?

Anomalous nodes in Twitter(~ 3 billion edges)
[U Kang, Brendan Meeder, +, PAKDD'11]

ICML'16

Triangle counting for large graphs?

Anomalous nodes in Twitter(~ 3 billion edges)
[U Kang, Brendan Meeder, +, PAKDD'11]

ICML'16

Triangle counting for large graphs?

Anomalous nodes in Twitter(~ 3 billion edges) [U Kang, Brendan Meeder, +, PAKDD'11]

Triangle counting for large graphs?

39

Anomalous nodes in Twitter(~ 3 billion edges)
[U Kang, Brendan Meeder, +, PAKDD'11]

MORE Graph Patterns

	Unweighted	Weighted
Static	Kleinberg et al. '99, Chakrabarti et al. '04, Newman '04] C. Triangle Power Law (TPL) [Tsourakakis '08] C. Eigenvalue Power Law (EPL) [Siganos et al. '03] L04. Community structure [Flake et al. '02, Girvan and Newman '02]	L10. Snapshot Power Law (SPL) [McGlohon et al. `08]
Dynamic	 L05. Densification Power Law (DPL) [Leskovec et al. `05] L06. Small and shrinking diameter [Albert and Barabási `99, Leskovec et al. `05] L07. Constant size 2nd and 3rd connected components [McGlohon et al. `08] L08. Principal Eigenvalue Power Law (λ₁PL) [Akoglu et al. `08] L09. Bursty/self-similar edge/weight additions [Gomez and Santonja `98, Gribble et al. `98, Crovella and 	L11. Weight Power Law (WPL) [McGlohon et al. `08]

RTG: A Recursive Realistic Graph Generator using Random Typing Leman Akoglu and Christos Faloutsos. PKDD'09.

MORE Graph Patterns

Mary McGlohon, Leman Akoglu, Christos
 Faloutsos. Statistical Properties of Social
 Networks. in "Social Network Data Analytics" (Ed.: Charu Aggarwal)

Deepayan Chakrabarti and Christos Faloutsos,
 <u>Graph Mining: Laws, Tools, and Case Studies</u> Oct.
 2012, Morgan Claypool.

http://www.cs.cmu.edu/~christos/TALKS/16-06-19-ICML/

Roadmap

- Introduction Motivation
- Part#1: Patterns in graphs
 - Patterns
- Anomaly / fraud detection
 - CopyCatch

Patterns >

anomalies

- Spectral methods ('fBox')
- Belief Propagation
- Part#2: time-evolving graphs; tensors
- Conclusions

(c) 2016, C. Faloutsos

42

Fraud

- Given
 - Who 'likes' what page, and when
- Find
 - Suspicious users and suspicious products

CopyCatch: Stopping Group Attacks by Spotting Lockstep Behavior in Social Networks, Alex Beutel, Wanhong Xu, Venkatesan Guruswami, Christopher Palow, Christos Faloutsos *WWW*, 2013.

Fraud

- Given
 - Who 'likes' what page, and when
- Find
 - Suspicious users and suspicious products

CopyCatch: Stopping Group Attacks by Spotting Lockstep Behavior in Social Networks, Alex Beutel, Wanhong Xu, Venkatesan Guruswami, Christopher Palow, Christos Faloutsos *WWW*, 2013.

Graph Patterns and Lockstep Our intuition Behavior

Lockstep behavior: Same Likes, same time

Graph Patterns and Lockstep Our intuition Behavior

Lockstep behavior: Same Likes, same time

Graph Patterns and Lockstep Our intuition Behavior

Lockstep behavior: Same Likes, same time

MapReduce Overview

- Use Hadoop to search for many clusters in parallel:
 - Start with randomly seed
 - 2. Update set of Pages and center Like times for each cluster
 - 3. Repeat until convergence

Deployment at Facebook

 CopyCatch runs regularly (along with many other security mechanisms, and a large Site Integrity team)

3 months of CopyCatch @ Facebook

#users caught

time

Deployment at Facebook

Manually labeled 22 randomly selected clusters from February 2013

Deployment at Facebook

Manually labeled 22 randomly selected clusters from February 2013

Roadmap

- Introduction Motivation
- Part#1: Patterns in graphs
 - Patterns
 - Anomaly / fraud detection
 - CopyCatch
 - Spectral methods ('fBox')
 - Belief Propagation
- Part#2: time-evolving graphs; tensors
- Conclusions

Problem: Social Network Link Fraud

Target: find "stealthy" attackers missed by other algorithms

Clique

41.7M nodes 1.5B edges

Bipartite core

Problem: Social Network Link Fraud

Target: find "stealthy" attackers missed by other algorithms

Lekan Olawole Lowe @loweinc 26
Sign up free and Get 400 followers a day using http://tweeteradder.com

Lekan Olawole Lowe @loweinc Get 400 followers a day using http://www.tweeterfollow.com

Neil Shah, Alex Beutel, Brian Gallagher and Christos Faloutsos. Spotting Suspicious Link Behavior with fBox: An Adversarial Perspective. ICDM 2014, Shenzhen, China.

Roadmap

- Introduction Motivation
- Part#1: Patterns in graphs
 - Patterns
 - Anomaly / fraud detection
 - CopyCatch
 - Spectral methods ('fBox', suspiciousness)
 - Belief Propagation
- Part#2: time-evolving graphs; tensors
- Conclusions

Suspicious Patterns in Event Data

A General Suspiciousness Metric for Dense Blocks in Multimodal Data, Meng Jiang, Alex Beutel, Peng Cui, Bryan Hooi, Shiqiang Yang, and Christos Faloutsos, *ICDM*, 2015.

Suspicious Patterns in Event Data

Which is more suspicious?

225 Users 20,000 Users Retweeting same 20 tweets Retweeting same 1 tweet 15 times each 6 times each VS. All in 3 hours All in 10 hours All from 2 IP addresses Answer: volume * D_{KL}(p|| p_{background}) ICML'1

Suspicious Patterns in Event Data

Retweeting: "Galaxy Note Dream Project: Happy Happy Life Traveling the World"

	#	User × tweet × IP × minute	Mass c	Suspiciousness
	1	$14 \times 1 \times 2 \times 1,114$	41,396	1,239,865
CROSSSPOT	2	$225 \times 1 \times 2 \times 200$	27,313	777,781
	3	$8\times2\times4\times1,872$	17,701	491,323
	1	$24\times6\times11\times439$	3,582	131,113
HOSVD	2	$18\times4\times5\times223$	1,942	74,087
	3	$14 \times 2 \times 1 \times 265$	9,061	381,211

Carnegie Mellon

Roadmap

- Introduction Motivation
- Part#1: Patterns in graphs
 - Patterns
 - Anomaly / fraud detection
 - CopyCatch
 - Spectral methods ('fBox')
 - (Matrix re-ordering + education -> 'groupNteach')
 - Belief Propagation
- Part#2: time-evolving graphs; tensors
- Conclusions

Problem dfn:

e.g.

Problem definition

- **Given** a large binary matrix of facts of *(object, property)* pairs
- **Find** *groupings* of the facts and the *order* of transmission
- To **optimize** 'student effort' (-> incremental learning curve, 'ALOC')

Bryan Hooi, Hyun Ah Song, et al, "Matrices, Compression, Learning Curves: Formulation, and the GroupNTeach Algorithms", PAKDD 2016

Details:

Given a large binary matrix of objects and properties, re-order rows and columns,

- **G1. Metric** for better encoding of matrix for student learning?
- G2. How do we construct language to describe it?
- G3. How do we optimize this metric?

VS.

#bits transmitted

Results

Roadmap

- Introduction Motivation
- Part#1: Patterns in graphs
 - Patterns
 - Anomaly / fraud detection
 - CopyCatch
 - Spectral methods ('fBox')
 - Belief Propagation
- Part#2: time-evolving graphs; tensors
- Conclusions

E-bay Fraud detection

w/ Polo Chau & Shashank Pandit, CMU [www'07]

E-bay Fraud detection

E-bay Fraud detection

E-bay Fraud detection - NetProbe

Popular press

The Washington Post

Ios Angeles Times

And less desirable attention:

• E-mail from 'Belgium police' ('copy of your code?')

Roadmap

- Introduction Motivation
- Part#1: Patterns in graphs
 - Patterns
 - Anomaly / fraud detection
 - CopyCatch
 - Spectral methods ('fBox')
 - Belief Propagation; fast computation & unification
- Part#2: time-evolving graphs; tensors
- Conclusions

Unifying Guilt-by-Association Approaches: Theorems and Fast Algorithms

Danai Koutra
U Kang
Hsing-Kuo Kenneth Pao

Tai-You Ke Duen Horng (Polo) Chau Christos Faloutsos

ECML PKDD, 5-9 September 2011, Athens, Greece

Problem Definition: GBA techniques

Are they related?

- RWR (Random Walk with Restarts)
 - google's pageRank ('if my friends are important, I'm important, too')
- SSL (Semi-supervised learning)
 - minimize the differences among neighbors
- BP (Belief propagation)
 - send messages to neighbors, on what you believe about them

ICML'16 (c) 2016, C. Faloutsos 85

Are they related? YES!

- RWR (Random Walk with Restarts)
 - google's pageRank ('if my friends are important, I'm important, too')
- SSL (Semi-supervised learning)
 - minimize the differences among neighbors
- BP (Belief propagation)
 - send messages to neighbors, on what you believe about them

ICML'16 (c) 2016, C. Faloutsos 86

Correspondence of Methods

Method	Matrix	Unknown		known
RWR	$[\mathbf{I} - \mathbf{c} \ \underline{\mathbf{A}}\mathbf{D}^{-1}]$	× x	=	$(1-c)\mathbf{y}$
SSL	$[\mathbf{I} + \mathbf{a}(\mathbf{D} - \underline{\mathbf{A}})]$	× x	=	\mathbf{y}
FABP	$[\mathbf{I} + a \mathbf{D} - c' \underline{\mathbf{A}}]$	\times b _h	=	$\Phi_{\mathbf{h}}$

adjacency matrix

FABP is linear on the number of edges.

ICML'16

Summary of Part#1

- *many* patterns in real graphs
 - Power-laws everywhere
 - Gaussian trap
 - Avg << Max

 Long (and growing) list of tools for anomaly/ fraud detection

Roadmap

- Introduction Motivation
- Part#1: Patterns in graphs

• Part#2: time-evolving graphs; tensors

- P2.1: time-evolving graphs
- [P2.2: with side information ('coupled' M.T.F.)
- Speed]
- Conclusions

Part 2: Time evolving graphs; tensors

- Problem #2.1:
 - Given who calls whom, and when
 - Find patterns / anomalies

ICML'16

- Problem #2.1:
 - Given who calls whom, and when
 - Find patterns / anomalies

ICML'16 (c) 2016, C. Faloutsos 94

- Problem #2.1:
 - Given who calls whom, and when
 - Find patterns / anomalies

ICML'16 (c) 2016, C. Faloutsos 95

- Problem #2.1:
 - Given who calls whom, and when
 - Find patterns / anomalies

ICML'16

(c) 2016, C. Faloutsos

- Problem #2.1':
 - Given author-keyword-date
 - Find patterns / anomalies

MANY more settings, with >2 'modes'

ICML'16

(c) 2016, C. Faloutsos

- Problem #2.1'':
 - Given subject verb object facts
 - Find patterns / anomalies

MANY more settings, with >2 'modes'

ICML'16

- Problem #2.1'':
 - Given <triplets>
 - Find patterns / anomalies

MANY more settings, with >2 'modes' (and 4, 5, etc modes)

ICML'16

(c) 2016, C. Faloutsos

Graphs & side info

- Problem #2.2: coupled (eg., side info)
 - Given subject verb object facts
 - And voxel-activity for each subject-word
 - Find patterns / anomalies

`apple tastes sweet'

100

Graphs & side info

- Problem #2.2: coupled (eg., side info)
 - Given subject verb object facts
 - And voxel-activity for each subject-word
 - Find patterns / anomalies

101

Roadmap

- Introduction Motivation
- Part#1: Patterns in graphs

• Part#2: time-evolving graphs; tensors

- P2.1: time-evolving graphs
- [P2.2: with side information ('coupled' M.T.F.)
- Speed]
- Conclusions

Answer to both: tensor factorization

 Recall: (SVD) matrix factorization: finds blocks

Answer to both: tensor factorization

• PARAFAC decomposition

Answer: tensor factorization

- PARAFAC decomposition
- Results for who-calls-whom-when

(c) 2016, C. Faloutsos 105

Anomaly detection in timeevolving graphs =

- Anomalous communities in phone call data:
 - European country, 4M clients, data over 2 weeks

~200 calls to EACH receiver on EACH day!

ICML'16 (c) 2016, C. Faloutsos 106

Anomaly detection in timeevolving graphs =

- Anomalous communities in phone call data:
 - European country, 4M clients, data over 2 weeks

~200 calls to EACH receiver on EACH day!

ICML'16 (c) 2016, C. Faloutsos 107

Anomaly detection in timeevolving graphs =

- Anomalous communities in phone call data:
 - European country, 4M clients, data over 2 weeks

Miguel Araujo, Spiros Papadimitriou, Stephan Günnemann, Christos Faloutsos, Prithwish Basu, Ananthram Swami, Evangelos Papalexakis, Danai Koutra. *Com2: Fast Automatic Discovery of Temporal (Comet) Communities*. PAKDD 2014, Tainan, Taiwan.

Roadmap

- Introduction Motivation
- Part#1: Patterns in graphs

- Part#2: time-evolving graphs; tensors
 - P2.1: Discoveries @ phonecall network

- [P2.2: Discoveries in neuro-semantics
- Speed]
- Conclusions

SKIP

Coupled Matrix-Tensor Factoriza

(CMTF)

- Brain Scan Data*
 - 9 persons
 - 60 nouns
- Questions
 - 218 questions
 - 'is it alive?', 'can you eat it?'

*Mitchell et al. *Predicting human brain activity associated with the meanings of nouns*. Science,2008. Data@

<u>www.cs.cmu.edu/afs/cs/project/theo-73/www/science2008/data.html</u>

- Brain Scan Data*
 - 9 persons
 - 60 nouns
- Questions
 - 218 questions
 - 'is it alive?', 'can you eat it?'

Patterns?

- Brain Scan Data*
 - 9 persons
 - 60 nouns
- Questions
 - 218 questions
 - 'is it alive?', 'can you eat it?'

Patterns?

ICML'16

Neuro-semantics

Nouns

beetle pants bee

Questions

can it cause you pain? do you see it daily? is it conscious?

Nouns

bear cow coat

Questions

does it grow? is it alive? was it ever alive?

Group 2

Nouns

glass tomato bell

Questions

can you pick it up? can you hold it in one hand? is it smaller than a golfball?'

Nouns

bed house car

Questions

does it use electricity? can you sit on it? does it cast a shadow?

Group 4

Neuro-semantics

Small items -> Premotor cortex

Nouns

glass

tomato

bell

Questions

can you pick it up? can you hold it in one hand? is it smaller than a golfball?'

Neuro-semantics

Small items -> Premotor cortex

Nouns glass tomato bell Questions

can you pick it up? can you hold it in one hand? is it smaller than a golfball?'

Evangelos Papalexakis, Tom Mitchell, Nicholas Sidiropoulos, Christos Faloutsos, Partha Pratim Talukdar, Brian Murphy, *Turbo-SMT: Accelerating Coupled Sparse Matrix-Tensor Factorizations by 200x*, SDM 2014

Part 2: Conclusions

- Time-evolving / heterogeneous graphs -> tensors
- PARAFAC finds patterns
- (GigaTensor/HaTen2 -> fast & scalable)

ICML'16

Roadmap

- Introduction Motivation
 - Why study (big) graphs?
- Part#1: Patterns in graphs
- Part#2: time-evolving graphs; tensors

Thanks

Disclaimer: All opinions are mine; not necessarily reflecting the opinions of the funding agencies

Thanks to: NSF IIS-0705359, IIS-0534205, CTA-INARC; Yahoo (M45), LLNL, IBM, SPRINT, Google, INTEL, HP, iLab

Carnegie Mellon

Akoglu, Leman

Kang, U

Araujo, Miguel

Koutra, Danai

Beutel, Alex

Papalexakis, Vagelis

(c) 2016, C. Faloutsos

Chau, Polo

Shah, Neil

Hooi, Bryan

Song, Hyun Ah 120

ICML'16

CONCLUSION#1 – Big data

Patterns Anomalies

• Large datasets reveal patterns/outliers that are invisible otherwise

121

CONCLUSION#2 – tensors

powerful tool

ICML'16 (c) 2016, C. Faloutsos 122

References

- D. Chakrabarti, C. Faloutsos: *Graph Mining Laws, Tools and Case Studies*, Morgan Claypool 2012
- http://www.morganclaypool.com/doi/abs/10.2200/ S00449ED1V01Y201209DMK006

TAKE HOME MESSAGE:

Cross-disciplinarity

ICML'16 (c) 2016, C. Faloutsos 124

Thank you!

Cross-disciplinarity

http://www.cs.cmu.edu/~christos/TALKS/16-06-19-ICML/