
Graph Sketching, Streaming and Space
Efficient Optimization

Part II

Sudipto Guha and Andrew McGregor

1/24

Space Efficient Optimization for Graphs

Sampling, Connectivity, Sparsification: How do these get used?

Techniques like Dimensionality Reduction, Embeddings, Lp → Lq, etc.,
are improving vector based computations.

Thesis: Graph optimization problems are natural next candidates.

Space is the final frontier. Processing Space 6= Storage Space.
Streaming as a vehicle to organize accesses in an algorithm.

View Sparsification as Embeddings:

I Embed the graph. Solve the optimization in the embedded space.

I Small space and faster runtimes!

We focus on cut-sparsification. Will not always work out of the box.
We will have to change relaxations and use sparsification with care.

2/24

Space Efficient Optimization for Graphs

Sampling, Connectivity, Sparsification: How do these get used?

Techniques like Dimensionality Reduction, Embeddings, Lp → Lq, etc.,
are improving vector based computations.

Thesis: Graph optimization problems are natural next candidates.

Space is the final frontier. Processing Space 6= Storage Space.
Streaming as a vehicle to organize accesses in an algorithm.

View Sparsification as Embeddings:

I Embed the graph. Solve the optimization in the embedded space.

I Small space and faster runtimes!

We focus on cut-sparsification. Will not always work out of the box.
We will have to change relaxations and use sparsification with care.

2/24

Space Efficient Optimization for Graphs

Sampling, Connectivity, Sparsification: How do these get used?

Techniques like Dimensionality Reduction, Embeddings, Lp → Lq, etc.,
are improving vector based computations.

Thesis: Graph optimization problems are natural next candidates.

Space is the final frontier. Processing Space 6= Storage Space.
Streaming as a vehicle to organize accesses in an algorithm.

View Sparsification as Embeddings:

I Embed the graph. Solve the optimization in the embedded space.

I Small space and faster runtimes!

We focus on cut-sparsification. Will not always work out of the box.
We will have to change relaxations and use sparsification with care.

2/24

Space Efficient Optimization for Graphs

Sampling, Connectivity, Sparsification: How do these get used?

Techniques like Dimensionality Reduction, Embeddings, Lp → Lq, etc.,
are improving vector based computations.

Thesis: Graph optimization problems are natural next candidates.

Space is the final frontier. Processing Space 6= Storage Space.
Streaming as a vehicle to organize accesses in an algorithm.

View Sparsification as Embeddings:

I Embed the graph. Solve the optimization in the embedded space.

I Small space and faster runtimes!

We focus on cut-sparsification. Will not always work out of the box.
We will have to change relaxations and use sparsification with care.

2/24

Plan of the Hour

Fast and approximate recap of fast and approximate convex optimization.
Multiplicative Weights Method (MWM). LP version. Oracles.
Example: Bipartite Matching. (1 + ε)-apx. MWM on Streams.

Global (Cut)-Sparsification. Single pass.
(a) Multiplicative Weights Method on SDPs.

Example: Correlation Clustering. Max-version.

(b) Multiplicative Weights Method on LPs.
Example: Correlation Clustering. Min-version.

New relaxations + oracle. Benefits in running time + space. Both cases.

Iterative (local) (Cut)-Sparsification. Multiples passes, Batch modes.

Example 2. Non-bipartite Matching. (1 + ε)-apx.
Cornerstone of Combinatorial Optimization, Dantzig Decompositions.
Benefits in time+space+adaptivity.

Wrap-up.

3/24

Plan of the Hour

Fast and approximate recap of fast and approximate convex optimization.

Multiplicative Weights Method (MWM). LP version. Oracles.
Example: Bipartite Matching. (1 + ε)-apx. MWM on Streams.

Global (Cut)-Sparsification. Single pass.
(a) Multiplicative Weights Method on SDPs.

Example: Correlation Clustering. Max-version.

(b) Multiplicative Weights Method on LPs.
Example: Correlation Clustering. Min-version.

New relaxations + oracle. Benefits in running time + space. Both cases.

Iterative (local) (Cut)-Sparsification. Multiples passes, Batch modes.

Example 2. Non-bipartite Matching. (1 + ε)-apx.
Cornerstone of Combinatorial Optimization, Dantzig Decompositions.
Benefits in time+space+adaptivity.

Wrap-up.

3/24

Plan of the Hour

Fast and approximate recap of fast and approximate convex optimization.
Multiplicative Weights Method (MWM). LP version. Oracles.

Example: Bipartite Matching. (1 + ε)-apx. MWM on Streams.

Global (Cut)-Sparsification. Single pass.
(a) Multiplicative Weights Method on SDPs.

Example: Correlation Clustering. Max-version.

(b) Multiplicative Weights Method on LPs.
Example: Correlation Clustering. Min-version.

New relaxations + oracle. Benefits in running time + space. Both cases.

Iterative (local) (Cut)-Sparsification. Multiples passes, Batch modes.

Example 2. Non-bipartite Matching. (1 + ε)-apx.
Cornerstone of Combinatorial Optimization, Dantzig Decompositions.
Benefits in time+space+adaptivity.

Wrap-up.

3/24

Plan of the Hour

Fast and approximate recap of fast and approximate convex optimization.
Multiplicative Weights Method (MWM). LP version. Oracles.
Example: Bipartite Matching. (1 + ε)-apx. MWM on Streams.

Global (Cut)-Sparsification. Single pass.
(a) Multiplicative Weights Method on SDPs.

Example: Correlation Clustering. Max-version.

(b) Multiplicative Weights Method on LPs.
Example: Correlation Clustering. Min-version.

New relaxations + oracle. Benefits in running time + space. Both cases.

Iterative (local) (Cut)-Sparsification. Multiples passes, Batch modes.

Example 2. Non-bipartite Matching. (1 + ε)-apx.
Cornerstone of Combinatorial Optimization, Dantzig Decompositions.
Benefits in time+space+adaptivity.

Wrap-up.

3/24

Plan of the Hour

Fast and approximate recap of fast and approximate convex optimization.
Multiplicative Weights Method (MWM). LP version. Oracles.
Example: Bipartite Matching. (1 + ε)-apx. MWM on Streams.

Global (Cut)-Sparsification. Single pass.

(a) Multiplicative Weights Method on SDPs.
Example: Correlation Clustering. Max-version.

(b) Multiplicative Weights Method on LPs.
Example: Correlation Clustering. Min-version.

New relaxations + oracle. Benefits in running time + space. Both cases.

Iterative (local) (Cut)-Sparsification. Multiples passes, Batch modes.

Example 2. Non-bipartite Matching. (1 + ε)-apx.
Cornerstone of Combinatorial Optimization, Dantzig Decompositions.
Benefits in time+space+adaptivity.

Wrap-up.

3/24

Plan of the Hour

Fast and approximate recap of fast and approximate convex optimization.
Multiplicative Weights Method (MWM). LP version. Oracles.
Example: Bipartite Matching. (1 + ε)-apx. MWM on Streams.

Global (Cut)-Sparsification. Single pass.
(a) Multiplicative Weights Method on SDPs.

Example: Correlation Clustering. Max-version.

(b) Multiplicative Weights Method on LPs.
Example: Correlation Clustering. Min-version.

New relaxations + oracle. Benefits in running time + space. Both cases.

Iterative (local) (Cut)-Sparsification. Multiples passes, Batch modes.

Example 2. Non-bipartite Matching. (1 + ε)-apx.
Cornerstone of Combinatorial Optimization, Dantzig Decompositions.
Benefits in time+space+adaptivity.

Wrap-up.

3/24

Plan of the Hour

Fast and approximate recap of fast and approximate convex optimization.
Multiplicative Weights Method (MWM). LP version. Oracles.
Example: Bipartite Matching. (1 + ε)-apx. MWM on Streams.

Global (Cut)-Sparsification. Single pass.
(a) Multiplicative Weights Method on SDPs.

Example: Correlation Clustering. Max-version.

(b) Multiplicative Weights Method on LPs.
Example: Correlation Clustering. Min-version.

New relaxations + oracle. Benefits in running time + space. Both cases.

Iterative (local) (Cut)-Sparsification. Multiples passes, Batch modes.

Example 2. Non-bipartite Matching. (1 + ε)-apx.
Cornerstone of Combinatorial Optimization, Dantzig Decompositions.
Benefits in time+space+adaptivity.

Wrap-up.

3/24

Plan of the Hour

Fast and approximate recap of fast and approximate convex optimization.
Multiplicative Weights Method (MWM). LP version. Oracles.
Example: Bipartite Matching. (1 + ε)-apx. MWM on Streams.

Global (Cut)-Sparsification. Single pass.
(a) Multiplicative Weights Method on SDPs.

Example: Correlation Clustering. Max-version.

(b) Multiplicative Weights Method on LPs.
Example: Correlation Clustering. Min-version.

New relaxations + oracle. Benefits in running time + space. Both cases.

Iterative (local) (Cut)-Sparsification. Multiples passes, Batch modes.

Example 2. Non-bipartite Matching. (1 + ε)-apx.
Cornerstone of Combinatorial Optimization, Dantzig Decompositions.
Benefits in time+space+adaptivity.

Wrap-up.

3/24

Plan of the Hour

Fast and approximate recap of fast and approximate convex optimization.
Multiplicative Weights Method (MWM). LP version. Oracles.
Example: Bipartite Matching. (1 + ε)-apx. MWM on Streams.

Global (Cut)-Sparsification. Single pass.
(a) Multiplicative Weights Method on SDPs.

Example: Correlation Clustering. Max-version.

(b) Multiplicative Weights Method on LPs.
Example: Correlation Clustering. Min-version.

New relaxations + oracle. Benefits in running time + space. Both cases.

Iterative (local) (Cut)-Sparsification. Multiples passes, Batch modes.

Example 2. Non-bipartite Matching. (1 + ε)-apx.

Cornerstone of Combinatorial Optimization, Dantzig Decompositions.
Benefits in time+space+adaptivity.

Wrap-up.

3/24

Plan of the Hour

Fast and approximate recap of fast and approximate convex optimization.
Multiplicative Weights Method (MWM). LP version. Oracles.
Example: Bipartite Matching. (1 + ε)-apx. MWM on Streams.

Global (Cut)-Sparsification. Single pass.
(a) Multiplicative Weights Method on SDPs.

Example: Correlation Clustering. Max-version.

(b) Multiplicative Weights Method on LPs.
Example: Correlation Clustering. Min-version.

New relaxations + oracle. Benefits in running time + space. Both cases.

Iterative (local) (Cut)-Sparsification. Multiples passes, Batch modes.

Example 2. Non-bipartite Matching. (1 + ε)-apx.
Cornerstone of Combinatorial Optimization, Dantzig Decompositions.
Benefits in time+space+adaptivity.

Wrap-up.

3/24

Plan of the Hour

Fast and approximate recap of fast and approximate convex optimization.
Multiplicative Weights Method (MWM). LP version. Oracles.
Example: Bipartite Matching. (1 + ε)-apx. MWM on Streams.

Global (Cut)-Sparsification. Single pass.
(a) Multiplicative Weights Method on SDPs.

Example: Correlation Clustering. Max-version.

(b) Multiplicative Weights Method on LPs.
Example: Correlation Clustering. Min-version.

New relaxations + oracle. Benefits in running time + space. Both cases.

Iterative (local) (Cut)-Sparsification. Multiples passes, Batch modes.

Example 2. Non-bipartite Matching. (1 + ε)-apx.
Cornerstone of Combinatorial Optimization, Dantzig Decompositions.
Benefits in time+space+adaptivity.

Wrap-up.

3/24

Multiplicative Weights Method: A Recap

Initially u = 1.
If Aiy < bi : lower ui , i.e., ui ← ui (1− ε)(bi−Aiy)/biρ. (Assume A,b ≥ 0).
If Aiy > bi : raise ui , i.e., ui ← ui (1 + ε)(Aiy−bi)/biρ.
Number of rounds depends on ρ, ε and other specifics of updating u.
ρ =width.

Ay ≤ b
cTy ≥ β
y ≥ 0

Ay ≤ b
cTy ≥ β
y ≥ 0

Ay ≤ ρb
cTy ≥ β
y ≥ 0

uTAy ≤ (1 + ε) uTb
•

•

•

•

•

• •

Ay ≤ (1 + 3ε)b
cTy ≥ (1− 3ε)β
y ≥ 0

4/24

Multiplicative Weights Method: A Recap

Initially u = 1.
If Aiy < bi : lower ui , i.e., ui ← ui (1− ε)(bi−Aiy)/biρ. (Assume A,b ≥ 0).
If Aiy > bi : raise ui , i.e., ui ← ui (1 + ε)(Aiy−bi)/biρ.
Number of rounds depends on ρ, ε and other specifics of updating u.
ρ =width.

Ay ≤ b
cTy ≥ β
y ≥ 0

Ay ≤ b
cTy ≥ β
y ≥ 0

Ay ≤ ρb
cTy ≥ β
y ≥ 0

uTAy ≤ (1 + ε) uTb
•

•

•

•

•

• •

Ay ≤ (1 + 3ε)b
cTy ≥ (1− 3ε)β
y ≥ 0

4/24

Multiplicative Weights Method: A Recap

Initially u = 1.

If Aiy < bi : lower ui , i.e., ui ← ui (1− ε)(bi−Aiy)/biρ. (Assume A,b ≥ 0).
If Aiy > bi : raise ui , i.e., ui ← ui (1 + ε)(Aiy−bi)/biρ.
Number of rounds depends on ρ, ε and other specifics of updating u.
ρ =width.

Ay ≤ b
cTy ≥ β
y ≥ 0

Ay ≤ b
cTy ≥ β
y ≥ 0

Ay ≤ ρb
cTy ≥ β
y ≥ 0

uTAy ≤ (1 + ε) uTb

•

•

•

•

•

• •

Ay ≤ (1 + 3ε)b
cTy ≥ (1− 3ε)β
y ≥ 0

4/24

Multiplicative Weights Method: A Recap

Initially u = 1.
If Aiy < bi : lower ui , i.e., ui ← ui (1− ε)(bi−Aiy)/biρ. (Assume A,b ≥ 0).
If Aiy > bi : raise ui , i.e., ui ← ui (1 + ε)(Aiy−bi)/biρ.

Number of rounds depends on ρ, ε and other specifics of updating u.
ρ =width.

Ay ≤ b
cTy ≥ β
y ≥ 0

Ay ≤ b
cTy ≥ β
y ≥ 0

Ay ≤ ρb
cTy ≥ β
y ≥ 0

uTAy ≤ (1 + ε) uTb
•

•

•

•

•

• •

Ay ≤ (1 + 3ε)b
cTy ≥ (1− 3ε)β
y ≥ 0

4/24

Multiplicative Weights Method: A Recap

Initially u = 1.
If Aiy < bi : lower ui , i.e., ui ← ui (1− ε)(bi−Aiy)/biρ. (Assume A,b ≥ 0).
If Aiy > bi : raise ui , i.e., ui ← ui (1 + ε)(Aiy−bi)/biρ.
Number of rounds depends on ρ, ε and other specifics of updating u.
ρ =width.

Ay ≤ b
cTy ≥ β
y ≥ 0

Ay ≤ b
cTy ≥ β
y ≥ 0

Ay ≤ ρb
cTy ≥ β
y ≥ 0

uTAy ≤ (1 + ε) uTb

•

•

•

•

•

• •

Ay ≤ (1 + 3ε)b
cTy ≥ (1− 3ε)β
y ≥ 0

4/24

Multiplicative Weights Method: A Recap

Initially u = 1.
If Aiy < bi : lower ui , i.e., ui ← ui (1− ε)(bi−Aiy)/biρ. (Assume A,b ≥ 0).
If Aiy > bi : raise ui , i.e., ui ← ui (1 + ε)(Aiy−bi)/biρ.
Number of rounds depends on ρ, ε and other specifics of updating u.
ρ =width.

Ay ≤ b
cTy ≥ β
y ≥ 0

Ay ≤ b
cTy ≥ β
y ≥ 0

Ay ≤ ρb
cTy ≥ β
y ≥ 0

uTAy ≤ (1 + ε) uTb

•

•

•

•

•

• •

Ay ≤ (1 + 3ε)b
cTy ≥ (1− 3ε)β
y ≥ 0

4/24

Multiplicative Weights Method: A Recap

Initially u = 1.
If Aiy < bi : lower ui , i.e., ui ← ui (1− ε)(bi−Aiy)/biρ. (Assume A,b ≥ 0).
If Aiy > bi : raise ui , i.e., ui ← ui (1 + ε)(Aiy−bi)/biρ.
Number of rounds depends on ρ, ε and other specifics of updating u.
ρ =width.

Ay ≤ b
cTy ≥ β
y ≥ 0

Ay ≤ b
cTy ≥ β
y ≥ 0

Ay ≤ ρb
cTy ≥ β
y ≥ 0

uTAy ≤ (1 + ε) uTb

•

•

•

•

•

• •

Ay ≤ (1 + 3ε)b
cTy ≥ (1− 3ε)β
y ≥ 0

4/24

Multiplicative Weights Method: A Recap

Initially u = 1.
If Aiy < bi : lower ui , i.e., ui ← ui (1− ε)(bi−Aiy)/biρ. (Assume A,b ≥ 0).
If Aiy > bi : raise ui , i.e., ui ← ui (1 + ε)(Aiy−bi)/biρ.
Number of rounds depends on ρ, ε and other specifics of updating u.
ρ =width.

Ay ≤ b
cTy ≥ β
y ≥ 0

Ay ≤ b
cTy ≥ β
y ≥ 0

Ay ≤ ρb
cTy ≥ β
y ≥ 0

uTAy ≤ (1 + ε) uTb

•

•

•

•

•

• •

Ay ≤ (1 + 3ε)b
cTy ≥ (1− 3ε)β
y ≥ 0

4/24

Multiplicative Weights Method: A Recap

Initially u = 1.
If Aiy < bi : lower ui , i.e., ui ← ui (1− ε)(bi−Aiy)/biρ. (Assume A,b ≥ 0).
If Aiy > bi : raise ui , i.e., ui ← ui (1 + ε)(Aiy−bi)/biρ.
Number of rounds depends on ρ, ε and other specifics of updating u.
ρ =width.

Ay ≤ b
cTy ≥ β
y ≥ 0

Ay ≤ b
cTy ≥ β
y ≥ 0

Ay ≤ ρb
cTy ≥ β
y ≥ 0

uTAy ≤ (1 + ε) uTb

•

•

•

•

•

• •

Ay ≤ (1 + 3ε)b
cTy ≥ (1− 3ε)β
y ≥ 0

4/24

Multiplicative Weights Method: A Recap

Initially u = 1.
If Aiy < bi : lower ui , i.e., ui ← ui (1− ε)(bi−Aiy)/biρ. (Assume A,b ≥ 0).
If Aiy > bi : raise ui , i.e., ui ← ui (1 + ε)(Aiy−bi)/biρ.
Number of rounds depends on ρ, ε and other specifics of updating u.
ρ =width.

Ay ≤ b
cTy ≥ β
y ≥ 0

Ay ≤ b
cTy ≥ β
y ≥ 0

Ay ≤ ρb
cTy ≥ β
y ≥ 0

uTAy ≤ (1 + ε) uTb

•

•

•

•

•

• •

Ay ≤ (1 + 3ε)b
cTy ≥ (1− 3ε)β
y ≥ 0

4/24

Multiplicative Weights Method: A Recap

Initially u = 1.
If Aiy < bi : lower ui , i.e., ui ← ui (1− ε)(bi−Aiy)/biρ. (Assume A,b ≥ 0).
If Aiy > bi : raise ui , i.e., ui ← ui (1 + ε)(Aiy−bi)/biρ.
Number of rounds depends on ρ, ε and other specifics of updating u.
ρ =width.

Ay ≤ b
cTy ≥ β
y ≥ 0

Ay ≤ b
cTy ≥ β
y ≥ 0

Ay ≤ ρb
cTy ≥ β
y ≥ 0

uTAy ≤ (1 + ε) uTb

•

•

•

•

•

•

•

Ay ≤ (1 + 3ε)b
cTy ≥ (1− 3ε)β
y ≥ 0

4/24

Multiplicative Weights Method: A Recap

Initially u = 1.
If Aiy < bi : lower ui , i.e., ui ← ui (1− ε)(bi−Aiy)/biρ. (Assume A,b ≥ 0).
If Aiy > bi : raise ui , i.e., ui ← ui (1 + ε)(Aiy−bi)/biρ.
Number of rounds depends on ρ, ε and other specifics of updating u.
ρ =width.

Ay ≤ b
cTy ≥ β
y ≥ 0

Ay ≤ b
cTy ≥ β
y ≥ 0

Ay ≤ ρb
cTy ≥ β
y ≥ 0

uTAy ≤ (1 + ε) uTb

•

•

•

•

•

• •

Ay ≤ (1 + 3ε)b
cTy ≥ (1− 3ε)β
y ≥ 0

4/24

Multiplicative Weights Method: A Recap

Initially u = 1.
If Aiy < bi : lower ui , i.e., ui ← ui (1− ε)(bi−Aiy)/biρ. (Assume A,b ≥ 0).
If Aiy > bi : raise ui , i.e., ui ← ui (1 + ε)(Aiy−bi)/biρ.
Number of rounds depends on ρ, ε and other specifics of updating u.
ρ =width.

Ay ≤ b
cTy ≥ β
y ≥ 0

Ay ≤ b
cTy ≥ β
y ≥ 0

Ay ≤ ρb
cTy ≥ β
y ≥ 0

uTAy ≤ (1 + ε) uTb

•

•

•

•

•

• •

Ay ≤ (1 + 3ε)b
cTy ≥ (1− 3ε)β
y ≥ 0

4/24

Multiplicative Weights Method: A Recap

Initially u = 1.
If Aiy < bi : lower ui , i.e., ui ← ui (1− ε)(bi−Aiy)/biρ. (Assume A,b ≥ 0).
If Aiy > bi : raise ui , i.e., ui ← ui (1 + ε)(Aiy−bi)/biρ.

Number of rounds depends on ρ, ε and other specifics of updating u.
ρ =width.

Ay ≤ b
cTy ≥ β
y ≥ 0

Ay ≤ b
cTy ≥ β
y ≥ 0

Ay ≤ ρb
cTy ≥ β
y ≥ 0

uTAy ≤ (1 + ε) uTb

•

•

•

•

•

• •

Ay ≤ (1 + 3ε)b
cTy ≥ (1− 3ε)β
y ≥ 0

4/24

MWM on Streams: Bipartite Matching
Ahn, Guha 14.
Integer and fractional optimums coincide. (yij = yji , (i , j) implies ∈ E .)

max
∑
(i,j)

yijwij

≥ β

ui →

∑
j

yij ≤ 1 ∀i

yij ≥ 0 ∀(i , j)

Streams: arbitrary list of m edges, . . . , 〈i , j ,wij〉, . . . for an n node graph.
Different from online learning. Input itself is in small pieces.

m

n

Applying MWM: Point = candidate set of edges, in m-dim space.
Hyperplanes?

∑
i ui
∑

j yij ≤
∑

i ui ⇔
∑

(i,j) yij(ui + uj) ≤
∑

i ui .

Store & update u. O(n) storage.

Want:



∑
(i,j)

yij(ui + uj)
∑
i

ui ≤
∑
i

ui∑
(i,j)

yijwij ≥ β∑
j

yij ≤ ρ ∀i

yij ≥ 0 ∀(i , j)

.

5/24

MWM on Streams: Bipartite Matching
Ahn, Guha 14.
Integer and fractional optimums coincide. (yij = yji , (i , j) implies ∈ E .)

max
∑
(i,j)

yijwij

≥ β

ui →

∑
j

yij ≤ 1 ∀i

yij ≥ 0 ∀(i , j)

Streams: arbitrary list of m edges, . . . , 〈i , j ,wij〉, . . . for an n node graph.
Different from online learning. Input itself is in small pieces.

m

n

Applying MWM: Point = candidate set of edges, in m-dim space.
Hyperplanes?

∑
i ui
∑

j yij ≤
∑

i ui ⇔
∑

(i,j) yij(ui + uj) ≤
∑

i ui .

Store & update u. O(n) storage.

Want:



∑
(i,j)

yij(ui + uj)
∑
i

ui ≤
∑
i

ui∑
(i,j)

yijwij ≥ β∑
j

yij ≤ ρ ∀i

yij ≥ 0 ∀(i , j)

.

5/24

MWM on Streams: Bipartite Matching
Ahn, Guha 14.
Integer and fractional optimums coincide. (yij = yji , (i , j) implies ∈ E .)

max
∑
(i,j)

yijwij

≥ β

ui →

∑
j

yij ≤ 1 ∀i

yij ≥ 0 ∀(i , j)

Streams: arbitrary list of m edges, . . . , 〈i , j ,wij〉, . . . for an n node graph.
Different from online learning. Input itself is in small pieces.

m

n

Applying MWM: Point = candidate set of edges, in m-dim space.
Hyperplanes?

∑
i ui
∑

j yij ≤
∑

i ui ⇔
∑

(i,j) yij(ui + uj) ≤
∑

i ui .

Store & update u. O(n) storage.

Want:



∑
(i,j)

yij(ui + uj)
∑
i

ui ≤
∑
i

ui∑
(i,j)

yijwij ≥ β∑
j

yij ≤ ρ ∀i

yij ≥ 0 ∀(i , j)

.

5/24

MWM on Streams: Bipartite Matching
Ahn, Guha 14.
Integer and fractional optimums coincide. (yij = yji , (i , j) implies ∈ E .)

max
∑
(i,j)

yijwij

≥ β

ui →

∑
j

yij ≤ 1 ∀i

yij ≥ 0 ∀(i , j)

Streams: arbitrary list of m edges, . . . , 〈i , j ,wij〉, . . . for an n node graph.
Different from online learning. Input itself is in small pieces.

m

n

Applying MWM: Point = candidate set of edges, in m-dim space.
Hyperplanes?

∑
i ui
∑

j yij ≤
∑

i ui ⇔
∑

(i,j) yij(ui + uj) ≤
∑

i ui .

Store & update u. O(n) storage.

Want:



∑
(i,j)

yij(ui + uj)
∑
i

ui ≤
∑
i

ui∑
(i,j)

yijwij ≥ β∑
j

yij ≤ ρ ∀i

yij ≥ 0 ∀(i , j)

.

5/24

MWM on Streams: Bipartite Matching
Ahn, Guha 14.
Integer and fractional optimums coincide. (yij = yji , (i , j) implies ∈ E .)

max
∑
(i,j)

yijwij

≥ β

ui →

∑
j

yij ≤ 1 ∀i

yij ≥ 0 ∀(i , j)

Streams: arbitrary list of m edges, . . . , 〈i , j ,wij〉, . . . for an n node graph.
Different from online learning. Input itself is in small pieces.

m

n

Applying MWM: Point = candidate set of edges, in m-dim space.
Hyperplanes?

∑
i ui
∑

j yij ≤
∑

i ui ⇔
∑

(i,j) yij(ui + uj) ≤
∑

i ui .

Store & update u. O(n) storage.

Want:



∑
(i,j)

yij(ui + uj)
∑
i

ui ≤
∑
i

ui∑
(i,j)

yijwij ≥ β∑
j

yij ≤ ρ ∀i

yij ≥ 0 ∀(i , j)

.

5/24

MWM on Streams: Bipartite Matching
Ahn, Guha 14.
Integer and fractional optimums coincide. (yij = yji , (i , j) implies ∈ E .)

max
∑
(i,j)

yijwij

≥ β

ui →

∑
j

yij ≤ 1 ∀i

yij ≥ 0 ∀(i , j)

Streams: arbitrary list of m edges, . . . , 〈i , j ,wij〉, . . . for an n node graph.
Different from online learning. Input itself is in small pieces.

m

n

Applying MWM: Point = candidate set of edges, in m-dim space.
Hyperplanes?

∑
i ui
∑

j yij ≤
∑

i ui ⇔
∑

(i,j) yij(ui + uj) ≤
∑

i ui .

Store & update u. O(n) storage.

Want:



∑
(i,j)

yij(ui + uj)
∑
i

ui ≤
∑
i

ui∑
(i,j)

yijwij ≥ β∑
j

yij ≤ ρ ∀i

yij ≥ 0 ∀(i , j)

.

5/24

MWM on Streams: Bipartite Matching
Ahn, Guha 14.
Integer and fractional optimums coincide. (yij = yji , (i , j) implies ∈ E .)

max
∑
(i,j)

yijwij

≥ β

ui →

∑
j

yij ≤ 1 ∀i

yij ≥ 0 ∀(i , j)

Streams: arbitrary list of m edges, . . . , 〈i , j ,wij〉, . . . for an n node graph.
Different from online learning. Input itself is in small pieces.

m

n

Applying MWM: Point = candidate set of edges, in m-dim space.
Hyperplanes?

∑
i ui
∑

j yij ≤
∑

i ui ⇔
∑

(i,j) yij(ui + uj) ≤
∑

i ui .

Store & update u. O(n) storage.

Want:



∑
(i,j)

yij(ui + uj)
∑
i

ui ≤
∑
i

ui∑
(i,j)

yijwij ≥ β∑
j

yij ≤ ρ ∀i

yij ≥ 0 ∀(i , j)

.

5/24

MWM on Streams: Bipartite Matching
Ahn, Guha 14.
Integer and fractional optimums coincide. (yij = yji , (i , j) implies ∈ E .)

max
∑
(i,j)

yijwij

≥ β

ui →

∑
j

yij ≤ 1 ∀i

yij ≥ 0 ∀(i , j)

Streams: arbitrary list of m edges, . . . , 〈i , j ,wij〉, . . . for an n node graph.
Different from online learning. Input itself is in small pieces.

m

n

Applying MWM: Point = candidate set of edges, in m-dim space.
Hyperplanes?

∑
i ui
∑

j yij ≤
∑

i ui ⇔
∑

(i,j) yij(ui + uj) ≤
∑

i ui .

Store & update u. O(n) storage.

Want:



∑
(i,j)

yij(ui + uj)
∑
i

ui ≤
∑
i

ui∑
(i,j)

yijwij ≥ β∑
j

yij ≤ ρ ∀i

yij ≥ 0 ∀(i , j)

.

5/24

MWM on Streams: Bipartite Matching
Ahn, Guha 14.
Integer and fractional optimums coincide. (yij = yji , (i , j) implies ∈ E .)

max
∑
(i,j)

yijwij

≥ β

ui →

∑
j

yij ≤ 1 ∀i

yij ≥ 0 ∀(i , j)

Streams: arbitrary list of m edges, . . . , 〈i , j ,wij〉, . . . for an n node graph.
Different from online learning. Input itself is in small pieces.

m

n

Applying MWM: Point = candidate set of edges, in m-dim space.
Hyperplanes?

∑
i ui
∑

j yij ≤
∑

i ui ⇔
∑

(i,j) yij(ui + uj) ≤
∑

i ui .

Store & update u. O(n) storage.

Want:



∑
(i,j)

yij(ui + uj)
∑
i

ui ≤
∑
i

ui∑
(i,j)

yijwij ≥ β∑
j

yij ≤ ρ ∀i

yij ≥ 0 ∀(i , j)

.

5/24

MWM on Streams: Bipartite Matching
Ahn, Guha 14.
Integer and fractional optimums coincide. (yij = yji , (i , j) implies ∈ E .)

max

∑
(i,j)

yijwij ≥ β

ui →

∑
j

yij ≤ 1 ∀i

yij ≥ 0 ∀(i , j)

Streams: arbitrary list of m edges, . . . , 〈i , j ,wij〉, . . . for an n node graph.

Different from online learning. Input itself is in small pieces.

m

n

Applying MWM: Point = candidate set of edges, in m-dim space.
Hyperplanes?

∑
i ui
∑

j yij ≤
∑

i ui ⇔
∑

(i,j) yij(ui + uj) ≤
∑

i ui .

Store & update u. O(n) storage.

Want:



∑
(i,j)

yij(ui + uj)
∑
i

ui ≤
∑
i

ui∑
(i,j)

yijwij ≥ β∑
j

yij ≤ ρ ∀i

yij ≥ 0 ∀(i , j)

.

5/24

MWM on Streams: Bipartite Matching
Ahn, Guha 14.
Integer and fractional optimums coincide. (yij = yji , (i , j) implies ∈ E .)

max

∑
(i,j)

yijwij ≥ β

ui →
∑
j

yij ≤ 1 ∀i

yij ≥ 0 ∀(i , j)

Streams: arbitrary list of m edges, . . . , 〈i , j ,wij〉, . . . for an n node graph.

Different from online learning. Input itself is in small pieces.

m

n

Applying MWM: Point = candidate set of edges, in m-dim space.
Hyperplanes?

∑
i ui
∑

j yij ≤
∑

i ui ⇔
∑

(i,j) yij(ui + uj) ≤
∑

i ui .

Store & update u. O(n) storage.

Want:



∑
(i,j)

yij(ui + uj)
∑
i

ui ≤
∑
i

ui∑
(i,j)

yijwij ≥ β∑
j

yij ≤ ρ ∀i

yij ≥ 0 ∀(i , j)

.

5/24

MWM on Streams: Bipartite Matching
Ahn, Guha 14.
Integer and fractional optimums coincide. (yij = yji , (i , j) implies ∈ E .)

max

∑
(i,j)

yijwij ≥ β

ui →
∑
j

yij ≤ 1 ∀i

yij ≥ 0 ∀(i , j)

Streams: arbitrary list of m edges, . . . , 〈i , j ,wij〉, . . . for an n node graph.

Different from online learning. Input itself is in small pieces.

m

n

Applying MWM: Point = candidate set of edges, in m-dim space.
Hyperplanes?

∑
i ui
∑

j yij ≤
∑

i ui ⇔
∑

(i,j) yij(ui + uj) ≤
∑

i ui .

Store & update u. O(n) storage.

Want:



∑
(i,j)

yij(ui + uj)
∑
i

ui ≤
∑
i

ui∑
(i,j)

yijwij ≥ β∑
j

yij ≤ ρ ∀i

yij ≥ 0 ∀(i , j)

.

5/24

MWM on Streams: Bipartite Matching
Ahn, Guha 14.
Integer and fractional optimums coincide. (yij = yji , (i , j) implies ∈ E .)

max

∑
(i,j)

yijwij ≥ β

ui →
∑
j

yij ≤ 1 ∀i

yij ≥ 0 ∀(i , j)

Streams: arbitrary list of m edges, . . . , 〈i , j ,wij〉, . . . for an n node graph.

Different from online learning. Input itself is in small pieces.

m

n

Applying MWM: Point = candidate set of edges, in m-dim space.
Hyperplanes?

∑
i ui
∑

j yij ≤
∑

i ui ⇔
∑

(i,j) yij(ui + uj) ≤
∑

i ui .

Store & update u. O(n) storage.

Want:



∑
(i,j)

yij(ui + uj)
∑
i

ui ≤
∑
i

ui∑
(i,j)

yijwij ≥ β∑
j

yij ≤ ρ ∀i

yij ≥ 0 ∀(i , j)

.

5/24

MWM on Streams: Bipartite Matching

Want:



∑
(i,j)

yij(ui + uj) ≤
∑

i ui∑
(i,j)

yijwij ≥ β∑
j

yij ≤ ρ ∀i

yij ≥ 0 ∀(i , j)

Now ∃yHave y

,

∀λ ≥ 0



∑
(i,j)

(wij − λ(ui + uj))yijyij
∑
(i,j)

(ui + uj)yij ≤
∑
i

ui/c ≥ (β − λ
∑

i ui)/cand
∑
(i,j)

wijyij ≥ β/c

∑
j

yijyij

≤ 1 ∀i

yijyij

≥ 0 ∀(i , j)Oracle(λ):

I Seeing (i , j) compute (wij − λ(ui + uj)). If -ve, discard.

I Find a streaming O(n) space c approximation on this filtered set.

If Oracle(λ) for λ = 0 satisfies
∑

(i,j) yij(ui + uj) ≤
∑

i ui/c then we also

have:
∑

(i,j) wijyij ≥ β/c . (easier case)

For λ = 0 we have
∑

(i,j) yij(ui + uj) ≥
∑

i ui/c .

For λ =
∑

i ui/β we have
∑

(i,j) yij(ui + uj) ≤
∑

i ui/c . (Set y = 0)

Binary search (or try values of λ in parallel).
Multiply y by c . Set ρ = c and we have a solution!

6/24

MWM on Streams: Bipartite Matching

Want:



∑
(i,j)

yij(ui + uj) ≤
∑

i ui∑
(i,j)

yijwij ≥ β∑
j

yij ≤ ρ ∀i

yij ≥ 0 ∀(i , j)

Now ∃y

Have y

, ∀λ ≥ 0



∑
(i,j)

(wij − λ(ui + uj))yij

yij
∑
(i,j)

(ui + uj)yij ≤
∑
i

ui/c

≥ (β − λ
∑

i ui)

/cand
∑
(i,j)

wijyij ≥ β/c

∑
j

yij

yij

≤ 1 ∀i

yij

yij

≥ 0 ∀(i , j)

Oracle(λ):

I Seeing (i , j) compute (wij − λ(ui + uj)). If -ve, discard.

I Find a streaming O(n) space c approximation on this filtered set.

If Oracle(λ) for λ = 0 satisfies
∑

(i,j) yij(ui + uj) ≤
∑

i ui/c then we also

have:
∑

(i,j) wijyij ≥ β/c . (easier case)

For λ = 0 we have
∑

(i,j) yij(ui + uj) ≥
∑

i ui/c .

For λ =
∑

i ui/β we have
∑

(i,j) yij(ui + uj) ≤
∑

i ui/c . (Set y = 0)

Binary search (or try values of λ in parallel).
Multiply y by c . Set ρ = c and we have a solution!

6/24

MWM on Streams: Bipartite Matching

Want:



∑
(i,j)

yij(ui + uj) ≤
∑

i ui∑
(i,j)

yijwij ≥ β∑
j

yij ≤ ρ ∀i

yij ≥ 0 ∀(i , j)

Now ∃y

Have y

, ∀λ ≥ 0



∑
(i,j)

(wij − λ(ui + uj))yij

yij
∑
(i,j)

(ui + uj)yij ≤
∑
i

ui/c

≥ (β − λ
∑

i ui)

/cand
∑
(i,j)

wijyij ≥ β/c

∑
j

yij

yij

≤ 1 ∀i

yij

yij

≥ 0 ∀(i , j)Oracle(λ):

I Seeing (i , j) compute (wij − λ(ui + uj)). If -ve, discard.

I Find a streaming O(n) space c approximation on this filtered set.

If Oracle(λ) for λ = 0 satisfies
∑

(i,j) yij(ui + uj) ≤
∑

i ui/c then we also

have:
∑

(i,j) wijyij ≥ β/c . (easier case)

For λ = 0 we have
∑

(i,j) yij(ui + uj) ≥
∑

i ui/c .

For λ =
∑

i ui/β we have
∑

(i,j) yij(ui + uj) ≤
∑

i ui/c . (Set y = 0)

Binary search (or try values of λ in parallel).
Multiply y by c . Set ρ = c and we have a solution!

6/24

MWM on Streams: Bipartite Matching

Want:



∑
(i,j)

yij(ui + uj) ≤
∑

i ui∑
(i,j)

yijwij ≥ β∑
j

yij ≤ ρ ∀i

yij ≥ 0 ∀(i , j)

Now ∃y

Have y

, ∀λ ≥ 0



∑
(i,j)

(wij − λ(ui + uj))yij

yij
∑
(i,j)

(ui + uj)yij ≤
∑
i

ui/c

≥ (β − λ
∑

i ui)

/cand
∑
(i,j)

wijyij ≥ β/c

∑
j

yij

yij

≤ 1 ∀i

yij

yij

≥ 0 ∀(i , j)Oracle(λ):

I Seeing (i , j) compute (wij − λ(ui + uj)). If -ve, discard.

I Find a streaming O(n) space c approximation on this filtered set.

If Oracle(λ) for λ = 0 satisfies
∑

(i,j) yij(ui + uj) ≤
∑

i ui/c then we also

have:
∑

(i,j) wijyij ≥ β/c . (easier case)

For λ = 0 we have
∑

(i,j) yij(ui + uj) ≥
∑

i ui/c .

For λ =
∑

i ui/β we have
∑

(i,j) yij(ui + uj) ≤
∑

i ui/c . (Set y = 0)

Binary search (or try values of λ in parallel).
Multiply y by c . Set ρ = c and we have a solution!

6/24

MWM on Streams: Bipartite Matching

Want:



∑
(i,j)

yij(ui + uj) ≤
∑

i ui∑
(i,j)

yijwij ≥ β∑
j

yij ≤ ρ ∀i

yij ≥ 0 ∀(i , j)

Now ∃y

Have y, ∀λ ≥ 0



∑
(i,j)

(wij − λ(ui + uj))

yij

yij

∑
(i,j)

(ui + uj)yij ≤
∑
i

ui/c

≥ (β − λ
∑

i ui)/c

and
∑
(i,j)

wijyij ≥ β/c

∑
j

yij

yij ≤ 1 ∀i

yij

yij ≥ 0 ∀(i , j)Oracle(λ):

I Seeing (i , j) compute (wij − λ(ui + uj)). If -ve, discard.

I Find a streaming O(n) space c approximation on this filtered set.

If Oracle(λ) for λ = 0 satisfies
∑

(i,j) yij(ui + uj) ≤
∑

i ui/c then we also

have:
∑

(i,j) wijyij ≥ β/c . (easier case)

For λ = 0 we have
∑

(i,j) yij(ui + uj) ≥
∑

i ui/c .

For λ =
∑

i ui/β we have
∑

(i,j) yij(ui + uj) ≤
∑

i ui/c . (Set y = 0)

Binary search (or try values of λ in parallel).
Multiply y by c . Set ρ = c and we have a solution!

6/24

MWM on Streams: Bipartite Matching

Want:



∑
(i,j)

yij(ui + uj) ≤
∑

i ui∑
(i,j)

yijwij ≥ β∑
j

yij ≤ ρ ∀i

yij ≥ 0 ∀(i , j)

Now ∃y

Have y,

∀λ ≥ 0



∑
(i,j)

(wij − λ(ui + uj))

yij

yij

∑
(i,j)

(ui + uj)yij ≤
∑
i

ui/c

≥ (β − λ
∑

i ui)/c

and
∑
(i,j)

wijyij ≥ β/c

∑
j

yij

yij ≤ 1 ∀i

yij

yij ≥ 0 ∀(i , j)Oracle(λ):

I Seeing (i , j) compute (wij − λ(ui + uj)). If -ve, discard.

I Find a streaming O(n) space c approximation on this filtered set.

If Oracle(λ) for λ = 0 satisfies
∑

(i,j) yij(ui + uj) ≤
∑

i ui/c then we also

have:
∑

(i,j) wijyij ≥ β/c . (easier case)

For λ = 0 we have
∑

(i,j) yij(ui + uj) ≥
∑

i ui/c .

For λ =
∑

i ui/β we have
∑

(i,j) yij(ui + uj) ≤
∑

i ui/c . (Set y = 0)

Binary search (or try values of λ in parallel).
Multiply y by c . Set ρ = c and we have a solution!

6/24

MWM on Streams: Bipartite Matching

Want:



∑
(i,j)

yij(ui + uj) ≤
∑

i ui∑
(i,j)

yijwij ≥ β∑
j

yij ≤ ρ ∀i

yij ≥ 0 ∀(i , j)

Now ∃y

Have y,

∀λ ≥ 0



∑
(i,j)

(wij − λ(ui + uj))

yij

yij

∑
(i,j)

(ui + uj)yij ≤
∑
i

ui/c

≥ (β − λ
∑

i ui)/c

and
∑
(i,j)

wijyij ≥ β/c

∑
j

yij

yij ≤ 1 ∀i

yij

yij ≥ 0 ∀(i , j)Oracle(λ):

I Seeing (i , j) compute (wij − λ(ui + uj)). If -ve, discard.

I Find a streaming O(n) space c approximation on this filtered set.

If Oracle(λ) for λ = 0 satisfies
∑

(i,j) yij(ui + uj) ≤
∑

i ui/c then we also

have:
∑

(i,j) wijyij ≥ β/c . (easier case)

For λ = 0 we have
∑

(i,j) yij(ui + uj) ≥
∑

i ui/c .

For λ =
∑

i ui/β we have
∑

(i,j) yij(ui + uj) ≤
∑

i ui/c . (Set y = 0)

Binary search (or try values of λ in parallel).
Multiply y by c . Set ρ = c and we have a solution!

6/24

MWM on Streams: Bipartite Matching

Want:



∑
(i,j)

yij(ui + uj) ≤
∑

i ui∑
(i,j)

yijwij ≥ β∑
j

yij ≤ ρ ∀i

yij ≥ 0 ∀(i , j)

Now ∃y

Have y,

∀λ ≥ 0



∑
(i,j)

(wij − λ(ui + uj))yijyij

∑
(i,j)

(ui + uj)yij ≤
∑
i

ui/c

≥ (β − λ
∑

i ui)/c

and
∑
(i,j)

wijyij ≥ β/c∑
j

yij

yij ≤ 1 ∀i

yij

yij ≥ 0 ∀(i , j)Oracle(λ):

I Seeing (i , j) compute (wij − λ(ui + uj)). If -ve, discard.

I Find a streaming O(n) space c approximation on this filtered set.

If Oracle(λ) for λ = 0 satisfies
∑

(i,j) yij(ui + uj) ≤
∑

i ui/c then we also

have:
∑

(i,j) wijyij ≥ β/c . (easier case)

For λ = 0 we have
∑

(i,j) yij(ui + uj) ≥
∑

i ui/c .

For λ =
∑

i ui/β we have
∑

(i,j) yij(ui + uj) ≤
∑

i ui/c . (Set y = 0)

Binary search (or try values of λ in parallel).

Multiply y by c . Set ρ = c and we have a solution!

6/24

MWM on Streams: Bipartite Matching

Want:



∑
(i,j)

yij(ui + uj) ≤
∑

i ui∑
(i,j)

yijwij ≥ β∑
j

yij ≤ ρ ∀i

yij ≥ 0 ∀(i , j)

Now ∃y

Have y,

∀λ ≥ 0



∑
(i,j)

(wij − λ(ui + uj))yijyij

∑
(i,j)

(ui + uj)yij ≤
∑
i

ui/c

≥ (β − λ
∑

i ui)/c

and
∑
(i,j)

wijyij ≥ β/c∑
j

yij

yij ≤ 1 ∀i

yij

yij ≥ 0 ∀(i , j)Oracle(λ):

I Seeing (i , j) compute (wij − λ(ui + uj)). If -ve, discard.

I Find a streaming O(n) space c approximation on this filtered set.

If Oracle(λ) for λ = 0 satisfies
∑

(i,j) yij(ui + uj) ≤
∑

i ui/c then we also

have:
∑

(i,j) wijyij ≥ β/c . (easier case)

For λ = 0 we have
∑

(i,j) yij(ui + uj) ≥
∑

i ui/c .

For λ =
∑

i ui/β we have
∑

(i,j) yij(ui + uj) ≤
∑

i ui/c . (Set y = 0)

Binary search (or try values of λ in parallel).
Multiply y by c . Set ρ = c and we have a solution!

6/24

MWM based Bipartite Matching for Map-Reduce?

More general than streaming.

Map-Reduce based 8 approximations in O(log n) rounds exist, e.g.,
Lattanzi, Mosely, Suri, Vassilivitskii 11.

We can compose them. O(log n) rounds to get a c-approximation.
Repeat O(cε−2 log n) times to get a (1 + ε)- fractional solution.

Can also round to an integral solution in small space.
A story for some other time.

7/24

Up Next ...

Fast and approximate recap of fast and approximate convex optimization.
Multiplicative Weights Method (MWM). LP version. Oracles.
Example: Bipartite Matching. (1 + ε)-apx. MWM on Streams.

Global (Cut)-Sparsification. Single pass.
(a) Multiplicative Weights Method on SDPs.

Example: Correlation Clustering. Max-version.

(b) Multiplicative Weights Method on LPs.
Example: Correlation Clustering. Min-version.

New relaxations + oracle. Benefits in running time + space. Both cases.

Iterative (local) (Cut)-Sparsification. Multiples passes, Batch modes.

Example 2. Non-bipartite Matching. (1 + ε)-apx.
Cornerstone of Combinatorial Optimization, Dantzig Decompositions.
Benefits in time+space+adaptivity.

Wrap-up.

8/24

Global Sparsification: There and back again

Think of a problem on graph cuts.

1

0.5

2

10 1

3

0.3

12

1

1

1

s t

Min s-t Cut?

Max s-t Cut? Max Cut? NP Hard. ≥ 0.5 apx uses SDPs.

Sparsification preserves all cuts within (1± ε).

(a) Does not imply anything about finding specific cuts. Yet.

(b) Does not obviously save space either!

We will see examples both (a)–(b) and how to overcome them.
Lets consider a variant of clustering. And richer graphs.

9/24

Global Sparsification: There and back again

Think of a problem on graph cuts.

1

0.5

2

10 1

3

0.3

12

1

1

1

s t

Min s-t Cut?

Max s-t Cut? Max Cut? NP Hard. ≥ 0.5 apx uses SDPs.

Sparsification preserves all cuts within (1± ε).

(a) Does not imply anything about finding specific cuts. Yet.

(b) Does not obviously save space either!

We will see examples both (a)–(b) and how to overcome them.
Lets consider a variant of clustering. And richer graphs.

9/24

Global Sparsification: There and back again

Think of a problem on graph cuts.

1

0.5

2

10 1

3

0.3

12

1

1

1

s t

Min s-t Cut? Max s-t Cut? Max Cut?

NP Hard. ≥ 0.5 apx uses SDPs.

Sparsification preserves all cuts within (1± ε).

(a) Does not imply anything about finding specific cuts. Yet.

(b) Does not obviously save space either!

We will see examples both (a)–(b) and how to overcome them.
Lets consider a variant of clustering. And richer graphs.

9/24

Global Sparsification: There and back again

Think of a problem on graph cuts.

1

0.5

2

10 1

3

0.3

12

1

1

1

s t

Min s-t Cut? Max s-t Cut? Max Cut? NP Hard. ≥ 0.5 apx uses SDPs.

Sparsification preserves all cuts within (1± ε).

(a) Does not imply anything about finding specific cuts. Yet.

(b) Does not obviously save space either!

We will see examples both (a)–(b) and how to overcome them.
Lets consider a variant of clustering. And richer graphs.

9/24

Global Sparsification: There and back again

Think of a problem on graph cuts.

1

0.5

2

10 1

3

0.3

12

1

1

1

s t

Min s-t Cut? Max s-t Cut? Max Cut? NP Hard. ≥ 0.5 apx uses SDPs.

Sparsification preserves all cuts within (1± ε).

(a) Does not imply anything about finding specific cuts.

Yet.

(b) Does not obviously save space either!

We will see examples both (a)–(b) and how to overcome them.
Lets consider a variant of clustering. And richer graphs.

9/24

Global Sparsification: There and back again

Think of a problem on graph cuts.

1

0.5

2

10 1

3

0.3

12

1

1

1

s t

Min s-t Cut? Max s-t Cut? Max Cut? NP Hard. ≥ 0.5 apx uses SDPs.

Sparsification preserves all cuts within (1± ε).

(a) Does not imply anything about finding specific cuts. Yet.

(b) Does not obviously save space either!

We will see examples both (a)–(b) and how to overcome them.
Lets consider a variant of clustering. And richer graphs.

9/24

Global Sparsification: There and back again

Think of a problem on graph cuts.

1

0.5

2

10 1

3

0.3

12

1

1

1

s t

Min s-t Cut? Max s-t Cut? Max Cut? NP Hard. ≥ 0.5 apx uses SDPs.

Sparsification preserves all cuts within (1± ε).

(a) Does not imply anything about finding specific cuts. Yet.

(b) Does not obviously save space either!

We will see examples both (a)–(b) and how to overcome them.
Lets consider a variant of clustering. And richer graphs.

9/24

Global Sparsification: There and back again

Think of a problem on graph cuts.

1

0.5

2

10 1

3

0.3

12

1

1

1

s t

Min s-t Cut? Max s-t Cut? Max Cut? NP Hard. ≥ 0.5 apx uses SDPs.

Sparsification preserves all cuts within (1± ε).

(a) Does not imply anything about finding specific cuts. Yet.

(b) Does not obviously save space either!

We will see examples both (a)–(b) and how to overcome them.
Lets consider a variant of clustering. And richer graphs.

9/24

Correlation Clustering

-1

1.1

2

10 1

-3

0.3

12

1

-2

1

C2C1

Find a grouping that agrees most with the graph.

I Count +ve edges in clusters. Count -ve edges out of clusters.

I Use as many clusters as you like.

Alternatively we can find a grouping that disagrees least.

NP Hard. Bansal Blum, Chawla, 04.

Many approximation algorithms are known. For many variants.
The approximations we see here were known defore, we will not focus on
the factor.

10/24

Correlation Clustering

-1

1.1

2

10 1

-3

0.3

12

1

-2

1 C2C1

Find a grouping that agrees most with the graph.

I Count +ve edges in clusters. Count -ve edges out of clusters.

I Use as many clusters as you like.

Alternatively we can find a grouping that disagrees least.

NP Hard. Bansal Blum, Chawla, 04.

Many approximation algorithms are known. For many variants.
The approximations we see here were known defore, we will not focus on
the factor.

10/24

Correlation Clustering: Motivation

Tutorial in KDD 2014. Bonchi, Garcia-Soriano, Liberty.
Clustering of objects known only through relationships.
(Can have wide ranges of edge weights, +ve/-ve.)

Consider an Entity Resolution example.

News arcticle 1: Mr Smith is devoted to mountain climbing. . . . Mrs
Smith is a diver and said that she finds diving to be a sublime
experience. . . . The goal is to reach new heights, said Smith.

Now consider a stream of such articles, with new as well as old entities.

Likely Mr Smith 6= Mrs Smith. Large -ve weight.
The other references can be either. Small weights depending on context.
Weights are not a metric. Have a large range.

11/24

Correlation Clustering: Motivation

Tutorial in KDD 2014. Bonchi, Garcia-Soriano, Liberty.
Clustering of objects known only through relationships.
(Can have wide ranges of edge weights, +ve/-ve.)

Consider an Entity Resolution example.

News arcticle 1: Mr Smith is devoted to mountain climbing. . . . Mrs
Smith is a diver and said that she finds diving to be a sublime
experience. . . . The goal is to reach new heights, said Smith.

Now consider a stream of such articles, with new as well as old entities.

Likely Mr Smith 6= Mrs Smith. Large -ve weight.
The other references can be either. Small weights depending on context.
Weights are not a metric. Have a large range.

11/24

Correlation Clustering: Motivation

Tutorial in KDD 2014. Bonchi, Garcia-Soriano, Liberty.
Clustering of objects known only through relationships.
(Can have wide ranges of edge weights, +ve/-ve.)

Consider an Entity Resolution example.

News arcticle 1: Mr Smith is devoted to mountain climbing. . . . Mrs
Smith is a diver and said that she finds diving to be a sublime
experience. . . . The goal is to reach new heights, said Smith.

Now consider a stream of such articles, with new as well as old entities.

Likely Mr Smith 6= Mrs Smith. Large -ve weight.
The other references can be either. Small weights depending on context.
Weights are not a metric. Have a large range.

11/24

Max-Agreement and SDPs

xij = 1 if in same group, and 0 otherwise. E (+/−) = +/−ve edge sets.
Think of vector programming over unit length vectors. xij = vi · vj ≤ 1.

max
∑

(i,j)∈E(+)

wijxij +
∑

(i,j)∈E(−)

|wij |(1− xij)

xii = 1 ∀i
xij ≥ 0 ∀i , j
x � 0

MWM (in this context): Collection of constraints. Feasible set: X .
Given x provide a real symmetric A (satisfying some width bounds)

(a) A ◦ x ≤ b − ε, note A ◦ x =
∑

i,j Aijxij .

(b) A ◦ x′ ≥ b for all feasible x′ ∈ X .

Why??

12/24

Max-Agreement and SDPs

xij = 1 if in same group, and 0 otherwise. E (+/−) = +/−ve edge sets.
Think of vector programming over unit length vectors. xij = vi · vj ≤ 1.

max
∑

(i,j)∈E(+)

wijxij +
∑

(i,j)∈E(−)

|wij |(1− xij)

xii = 1 ∀i
xij ≥ 0 ∀i , j
x � 0

MWM (in this context): Collection of constraints. Feasible set: X .
Given x provide a real symmetric A (satisfying some width bounds)

(a) A ◦ x ≤ b − ε, note A ◦ x =
∑

i,j Aijxij .

(b) A ◦ x′ ≥ b for all feasible x′ ∈ X .

Why??

12/24

Max-Agreement and SDPs

xij = 1 if in same group, and 0 otherwise. E (+/−) = +/−ve edge sets.
Think of vector programming over unit length vectors. xij = vi · vj ≤ 1.

max
∑

(i,j)∈E(+)

wijxij +
∑

(i,j)∈E(−)

|wij |(1− xij)

xii = 1 ∀i
xij ≥ 0 ∀i , j
x � 0

MWM (in this context): Collection of constraints. Feasible set: X .
Given x provide a real symmetric A (satisfying some width bounds)

(a) A ◦ x ≤ b − ε, note A ◦ x =
∑

i,j Aijxij .

(b) A ◦ x′ ≥ b for all feasible x′ ∈ X .

Why??

12/24

Multiplicative Weights Method: Another Recap

Instead of tracking violations and averaging solutions at the end,
Consider the process from the perspective of u

Dual of a hyperplane?

Point in dual space.

Dual of a point?

Constraint in dual space.

Suppose we prove [*]: ∃u s.t. ATu ≥ c and bTu < β.
Providing a y corresponds to: we have not yet proved [*].
Think trajectories.
MWM on dual.
e.g., Steurer 10.

Ay ≤ b
cTy ≥ β
y ≥ 0

Easy
decision
problem

•

•

•
••

•
•••

•

13/24

Multiplicative Weights Method: Another Recap

Instead of tracking violations and averaging solutions at the end,
Consider the process from the perspective of u

Dual of a hyperplane?

Point in dual space.

Dual of a point?

Constraint in dual space.

Suppose we prove [*]: ∃u s.t. ATu ≥ c and bTu < β.
Providing a y corresponds to: we have not yet proved [*].
Think trajectories.
MWM on dual.
e.g., Steurer 10.

Ay ≤ b
cTy ≥ β
y ≥ 0

Easy
decision
problem

•

•

•
••

•
•••

•

13/24

Multiplicative Weights Method: Another Recap

Instead of tracking violations and averaging solutions at the end,
Consider the process from the perspective of u

Dual of a hyperplane?

Point in dual space.

Dual of a point?

Constraint in dual space.

Suppose we prove [*]: ∃u s.t. ATu ≥ c and bTu < β.
Providing a y corresponds to: we have not yet proved [*].
Think trajectories.
MWM on dual.
e.g., Steurer 10.

Ay ≤ b
cTy ≥ β
y ≥ 0

Easy
decision
problem

•

•

•
••

•
•••

•

13/24

Multiplicative Weights Method: Another Recap

Instead of tracking violations and averaging solutions at the end,
Consider the process from the perspective of u

Dual of a hyperplane?

Point in dual space.

Dual of a point?

Constraint in dual space.

Suppose we prove [*]: ∃u s.t. ATu ≥ c and bTu < β.
Providing a y corresponds to: we have not yet proved [*].
Think trajectories.
MWM on dual.
e.g., Steurer 10.

Ay ≤ b
cTy ≥ β
y ≥ 0

Easy
decision
problem

•

•

•
••

•
•••

•

13/24

Multiplicative Weights Method: Another Recap

Instead of tracking violations and averaging solutions at the end,
Consider the process from the perspective of u

Dual of a hyperplane?

Point in dual space.

Dual of a point?

Constraint in dual space.

Suppose we prove [*]: ∃u s.t. ATu ≥ c and bTu < β.
Providing a y corresponds to: we have not yet proved [*].
Think trajectories.
MWM on dual.
e.g., Steurer 10.

Ay ≤ b
cTy ≥ β
y ≥ 0

Easy
decision
problem

•

•

•
••

•
•••

•

13/24

Multiplicative Weights Method: Another Recap

Instead of tracking violations and averaging solutions at the end,
Consider the process from the perspective of u

Dual of a hyperplane?

Point in dual space.

Dual of a point?

Constraint in dual space.

Suppose we prove [*]: ∃u s.t. ATu ≥ c and bTu < β.
Providing a y corresponds to: we have not yet proved [*].
Think trajectories.
MWM on dual.
e.g., Steurer 10.

Ay ≤ b
cTy ≥ β
y ≥ 0

Easy
decision
problem

•

•

•
••

•
•••

•

13/24

Multiplicative Weights Method: Another Recap

Instead of tracking violations and averaging solutions at the end,
Consider the process from the perspective of u

Dual of a hyperplane?

Point in dual space.

Dual of a point?

Constraint in dual space.

Suppose we prove [*]: ∃u s.t. ATu ≥ c and bTu < β.
Providing a y corresponds to: we have not yet proved [*].
Think trajectories.
MWM on dual.
e.g., Steurer 10.

Ay ≤ b
cTy ≥ β
y ≥ 0

Easy
decision
problem

•

•

•
••

•
•••

•

13/24

Multiplicative Weights Method: Another Recap

Instead of tracking violations and averaging solutions at the end,
Consider the process from the perspective of u

Dual of a hyperplane? Point in dual space.
Dual of a point? Constraint in dual space.

Suppose we prove [*]: ∃u s.t. ATu ≥ c and bTu < β.

Providing a y corresponds to: we have not yet proved [*].
Think trajectories.
MWM on dual.
e.g., Steurer 10.

Ay ≤ b
cTy ≥ β
y ≥ 0

Easy
decision
problem

•

•

•
••

•
•••

•

13/24

Multiplicative Weights Method: Another Recap

Instead of tracking violations and averaging solutions at the end,
Consider the process from the perspective of u

Dual of a hyperplane? Point in dual space.
Dual of a point? Constraint in dual space.

Suppose we prove [*]: ∃u s.t. ATu ≥ c and bTu < β.
Providing a y corresponds to: we have not yet proved [*].

Think trajectories.
MWM on dual.
e.g., Steurer 10.

Ay ≤ b
cTy ≥ β
y ≥ 0

Easy
decision
problem

•

•

•
••

•
•••

•

13/24

Multiplicative Weights Method: Another Recap

Instead of tracking violations and averaging solutions at the end,
Consider the process from the perspective of u

Dual of a hyperplane? Point in dual space.
Dual of a point? Constraint in dual space.

Suppose we prove [*]: ∃u s.t. ATu ≥ c and bTu < β.
Providing a y corresponds to: we have not yet proved [*].
Think trajectories.
MWM on dual.
e.g., Steurer 10. ATu ≥ c

bTu < β
u ≥ 0

•

•

•
••

•
•••

•

13/24

Max-Agreement and SDPs
xij = 1 if in same group, and 0 otherwise. E (+/−) = +/−ve edge sets.
Think of vector programming over unit length vectors. xij = vi · vj ≤ 1.

max

β ≤

∑
(i,j)∈E(+)

wijxij +
∑

(i,j)∈E(−)

|wij |(1− xij)

(1− xij)
xii + xjj − 2xij

2

xii = 1 ∀i
xij ≥ 0 ∀i , j
x � 0

MWM (in this context): Collection of constraints. Feasible set: X .
Given x provide a real symmetric A (satisfying some width bounds)

(a) A ◦ x ≤ b − ε, note A ◦ x =
∑

i,j Aijxij .

(b) A ◦ x′ ≥ b for all feasible x′ ∈ X .

Why.

Does not work (width is high).Does not work (width is high). Linear Space. Linear time. 0.76-apx
Relaxation needs to be compatible with trajectory.
Single pass. Sparsify E (+) and E (−) separately.

Ahn 13, Ahn, Cormode, Guha, McGregor, Wirth 15.

14/24

Max-Agreement and SDPs
xij = 1 if in same group, and 0 otherwise. E (+/−) = +/−ve edge sets.
Think of vector programming over unit length vectors. xij = vi · vj ≤ 1.

max

β ≤
∑

(i,j)∈E(+)

wijxij +
∑

(i,j)∈E(−)

|wij |(1− xij)

(1− xij)
xii + xjj − 2xij

2

xii = 1 ∀i
xij ≥ 0 ∀i , j
x � 0

MWM (in this context): Collection of constraints. Feasible set: X .
Given x provide a real symmetric A (satisfying some width bounds)

(a) A ◦ x ≤ b − ε, note A ◦ x =
∑

i,j Aijxij .

(b) A ◦ x′ ≥ b for all feasible x′ ∈ X .

Why. Does not work (width is high).

Does not work (width is high). Linear Space. Linear time. 0.76-apx
Relaxation needs to be compatible with trajectory.
Single pass. Sparsify E (+) and E (−) separately.

Ahn 13, Ahn, Cormode, Guha, McGregor, Wirth 15.

14/24

Max-Agreement and SDPs
xij = 1 if in same group, and 0 otherwise. E (+/−) = +/−ve edge sets.
Think of vector programming over unit length vectors. xij = vi · vj ≤ 1.

max

β ≤
∑

(i,j)∈E(+)

wijxij +
∑

(i,j)∈E(−)

|wij |

(1− xij)

(1− xij)
xii + xjj − 2xij

2

xii = 1 ∀i
xij ≥ 0 ∀i , j
x � 0

MWM (in this context): Collection of constraints. Feasible set: X .
Given x provide a real symmetric A (satisfying some width bounds)

(a) A ◦ x ≤ b − ε, note A ◦ x =
∑

i,j Aijxij .

(b) A ◦ x′ ≥ b for all feasible x′ ∈ X .

Why.

Does not work (width is high).

Does not work (width is high). Linear Space. Linear time. 0.76-apx

Relaxation needs to be compatible with trajectory.
Single pass. Sparsify E (+) and E (−) separately.

Ahn 13, Ahn, Cormode, Guha, McGregor, Wirth 15.

14/24

Max-Agreement and SDPs
xij = 1 if in same group, and 0 otherwise. E (+/−) = +/−ve edge sets.
Think of vector programming over unit length vectors. xij = vi · vj ≤ 1.

max

β ≤
∑

(i,j)∈E(+)

wijxij +
∑

(i,j)∈E(−)

|wij |

(1− xij)

(1− xij)
xii + xjj − 2xij

2

xii = 1 ∀i
xij ≥ 0 ∀i , j
x � 0

MWM (in this context): Collection of constraints. Feasible set: X .
Given x provide a real symmetric A (satisfying some width bounds)

(a) A ◦ x ≤ b − ε, note A ◦ x =
∑

i,j Aijxij .

(b) A ◦ x′ ≥ b for all feasible x′ ∈ X .

Why.

Does not work (width is high).

Does not work (width is high). Linear Space. Linear time. 0.76-apx
Relaxation needs to be compatible with trajectory.
Single pass. Sparsify E (+) and E (−) separately.

Ahn 13, Ahn, Cormode, Guha, McGregor, Wirth 15.

14/24

Min-Disagreement

Equivalent to Max-Agreement at optimality. Not in approximation.

xij = 1 if in same group, and 0 otherwise. E (+/−) = +/−ve edge sets.

• •

•

Triangle constraints

min
∑

(i,j)∈E(+)

wij(1− xij) +
∑

(i,j)∈E(−)

|wij |xij

xij ≤ 1 ∀i , j
xij ≥ 0 ∀i , j
(1− xij) + (1− xjk) ≥ (1− xik) ∀i , j , k

A linear program.

Θ(n3) Constraints, Θ(n2) variables.
1 pass lower bound of |E (−)| for any apx via Communication Complexity.

Sparsify E (+), store E (−)? Will have Õ(n) + |E (−)| variables.

Does not work. The triangle constraints need all
(
n
2

)
variables.

15/24

Min-Disagreement

Equivalent to Max-Agreement at optimality. Not in approximation.

xij = 1 if in same group, and 0 otherwise. E (+/−) = +/−ve edge sets.

• •

•

Triangle constraints

min
∑

(i,j)∈E(+)

wij(1− xij) +
∑

(i,j)∈E(−)

|wij |xij

xij ≤ 1 ∀i , j
xij ≥ 0 ∀i , j
(1− xij) + (1− xjk) ≥ (1− xik) ∀i , j , k

A linear program. Θ(n3) Constraints, Θ(n2) variables.

1 pass lower bound of |E (−)| for any apx via Communication Complexity.

Sparsify E (+), store E (−)? Will have Õ(n) + |E (−)| variables.

Does not work. The triangle constraints need all
(
n
2

)
variables.

15/24

Min-Disagreement

Equivalent to Max-Agreement at optimality. Not in approximation.

xij = 1 if in same group, and 0 otherwise. E (+/−) = +/−ve edge sets.

• •

•

Triangle constraints

min
∑

(i,j)∈E(+)

wij(1− xij) +
∑

(i,j)∈E(−)

|wij |xij

xij ≤ 1 ∀i , j
xij ≥ 0 ∀i , j
(1− xij) + (1− xjk) ≥ (1− xik) ∀i , j , k

A linear program. Θ(n3) Constraints, Θ(n2) variables.
1 pass lower bound of |E (−)| for any apx via Communication Complexity.

Sparsify E (+), store E (−)? Will have Õ(n) + |E (−)| variables.

Does not work. The triangle constraints need all
(
n
2

)
variables.

15/24

Min-Disagreement

Equivalent to Max-Agreement at optimality. Not in approximation.

xij = 1 if in same group, and 0 otherwise. E (+/−) = +/−ve edge sets.

• •

•

Triangle constraints

min
∑

(i,j)∈E(+)

wij(1− xij) +
∑

(i,j)∈E(−)

|wij |xij

xij ≤ 1 ∀i , j
xij ≥ 0 ∀i , j
(1− xij) + (1− xjk) ≥ (1− xik) ∀i , j , k

A linear program. Θ(n3) Constraints, Θ(n2) variables.
1 pass lower bound of |E (−)| for any apx via Communication Complexity.

Sparsify E (+), store E (−)? Will have Õ(n) + |E (−)| variables.

Does not work. The triangle constraints need all
(
n
2

)
variables.

15/24

Min-Disagreement

Equivalent to Max-Agreement at optimality. Not in approximation.

xij = 1 if in same group, and 0 otherwise. E (+/−) = +/−ve edge sets.

• •

•

Triangle constraints

min
∑

(i,j)∈E(+)

wij(1− xij) +
∑

(i,j)∈E(−)

|wij |xij

xij ≤ 1 ∀i , j
xij ≥ 0 ∀i , j
(1− xij) + (1− xjk) ≥ (1− xik) ∀i , j , k

A linear program. Θ(n3) Constraints, Θ(n2) variables.
1 pass lower bound of |E (−)| for any apx via Communication Complexity.

Sparsify E (+), store E (−)? Will have Õ(n) + |E (−)| variables.

Does not work. The triangle constraints need all
(
n
2

)
variables.

15/24

Min-Disagreement

Equivalent to Max-Agreement at optimality. Not in approximation.

xij = 1 if in same group, and 0 otherwise. E (+/−) = +/−ve edge sets.
Set yij = 1− xij for +ve edges. zij = xij for -ve edges.

min
∑

(i,j)∈E(+)

wijyij +
∑

(i,j)∈E(−)

|wij |zij

yij , zij ≥ 0 ∀i , j
yij , zij?

∑
(u,v)∈P(ij)

yuv + zij ≥ 1 ∀i , j , and i-j path P(ij)

Sparsify E (+). Store E (−). Θ(n2)→ Õ(n) + |E (−)| variables?

.

Θ(n3) Constraints

→ Exponentially many constraints!
Solve LP (ellipsoid) & Ball Growing: Garg, Vazirani, Yannakakis 93.

i

j

|wij |

MWM on the dual. Õ(n + |E (−)|) space and Õ(n2) time. ACGMW 15.

Round infeasible primal (the running average). Success → done.
Failure → violated constraint(s) → point needed for MWM on Dual.

16/24

Min-Disagreement

Equivalent to Max-Agreement at optimality. Not in approximation.

xij = 1 if in same group, and 0 otherwise. E (+/−) = +/−ve edge sets.
Set yij = 1− xij for +ve edges. zij = xij for -ve edges.

min
∑

(i,j)∈E(+)

wijyij +
∑

(i,j)∈E(−)

|wij |zij

yij , zij ≥ 0 ∀i , j

yij , zij?

∑
(u,v)∈P(ij)

yuv + zij ≥ 1 ∀i , j , and i-j path P(ij)

Sparsify E (+). Store E (−). Θ(n2)→ Õ(n) + |E (−)| variables

?

.
Θ(n3) Constraints → Exponentially many constraints!

Solve LP (ellipsoid) & Ball Growing: Garg, Vazirani, Yannakakis 93.

i

j

|wij |

MWM on the dual. Õ(n + |E (−)|) space and Õ(n2) time. ACGMW 15.

Round infeasible primal (the running average). Success → done.
Failure → violated constraint(s) → point needed for MWM on Dual.

16/24

Min-Disagreement

Equivalent to Max-Agreement at optimality. Not in approximation.

xij = 1 if in same group, and 0 otherwise. E (+/−) = +/−ve edge sets.
Set yij = 1− xij for +ve edges. zij = xij for -ve edges.

min
∑

(i,j)∈E(+)

wijyij +
∑

(i,j)∈E(−)

|wij |zij

yij , zij ≥ 0 ∀i , j

yij , zij?

∑
(u,v)∈P(ij)

yuv + zij ≥ 1 ∀i , j , and i-j path P(ij)

Sparsify E (+). Store E (−). Θ(n2)→ Õ(n) + |E (−)| variables

?

.
Θ(n3) Constraints → Exponentially many constraints!
Solve LP (ellipsoid) & Ball Growing: Garg, Vazirani, Yannakakis 93.

i

j

|wij |

MWM on the dual. Õ(n + |E (−)|) space and Õ(n2) time. ACGMW 15.

Round infeasible primal (the running average). Success → done.
Failure → violated constraint(s) → point needed for MWM on Dual.

16/24

Min-Disagreement

Equivalent to Max-Agreement at optimality. Not in approximation.

xij = 1 if in same group, and 0 otherwise. E (+/−) = +/−ve edge sets.
Set yij = 1− xij for +ve edges. zij = xij for -ve edges.

min
∑

(i,j)∈E(+)

wijyij +
∑

(i,j)∈E(−)

|wij |zij

yij , zij ≥ 0 ∀i , j

yij , zij?

∑
(u,v)∈P(ij)

yuv + zij ≥ 1 ∀i , j , and i-j path P(ij)

Sparsify E (+). Store E (−). Θ(n2)→ Õ(n) + |E (−)| variables

?

.
Θ(n3) Constraints → Exponentially many constraints!
Solve LP (ellipsoid) & Ball Growing: Garg, Vazirani, Yannakakis 93.

i

j

|wij |

MWM on the dual. Õ(n + |E (−)|) space and Õ(n2) time. ACGMW 15.

Round infeasible primal (the running average). Success → done.
Failure → violated constraint(s) → point needed for MWM on Dual.

16/24

Min-Disagreement

Equivalent to Max-Agreement at optimality. Not in approximation.

xij = 1 if in same group, and 0 otherwise. E (+/−) = +/−ve edge sets.
Set yij = 1− xij for +ve edges. zij = xij for -ve edges.

min
∑

(i,j)∈E(+)

wijyij +
∑

(i,j)∈E(−)

|wij |zij

yij , zij ≥ 0 ∀i , j

yij , zij?

∑
(u,v)∈P(ij)

yuv + zij ≥ 1 ∀i , j , and i-j path P(ij)

Sparsify E (+). Store E (−). Θ(n2)→ Õ(n) + |E (−)| variables

?

.
Θ(n3) Constraints → Exponentially many constraints!
Solve LP (ellipsoid) & Ball Growing: Garg, Vazirani, Yannakakis 93.

i

j

|wij |

MWM on the dual. Õ(n + |E (−)|) space and Õ(n2) time. ACGMW 15.

Round infeasible primal (the running average). Success → done.
Failure → violated constraint(s) → point needed for MWM on Dual.

16/24

Up Next ...

Fast and approximate recap of fast and approximate convex optimization.
Multiplicative Weights Method (MWM). LP version. Oracles.
Example: Bipartite Matching. MWM on Streams.

Global (Cut)-Sparsification. Single pass.
(a) Multiplicative Weights Method on SDPs.

Example: Correlation Clustering. Max-version.

(b) Multiplicative Weights Method on LPs.
Example: Correlation Clustering. Min-version.

New relaxations + oracle. Benefits in running time + space. Both cases.

Iterative (local) (Cut)-Sparsification. Multiples passes, Batch modes.

Example 2. Non-bipartite Matching. (1 + ε)-apx.
Cornerstone of Combinatorial Optimization, Dantzig Decompositions.
Benefits in time+space+adaptivity.

Wrap-up.

17/24

New Strategy: Putting the Horse before the Cart

A natural algorithm for non-bipartite matching. Ahn, Guha 15.

1. Find an initial solution.

Of the dual problem. (A trend?)

2. We assign some prices to the edges.
3. For O(10/ε) steps:

3.1

Sample

Sample n1.1 edges using current prices.
3.2 Find the best weighted matching in the sample.
3.3 Maintain the best weight matching found (say β) so far.
3.4

Update

Update the prices.

Update:


1. Subdivide sampled edges in t = O(1

ε log n) blocks

2. Simulate t steps of a primal-dual algorithm trying
to prove Opt ≈ β.

Feasible Dual ≤ β(1 + O(ε)).

3. Obtain new prices on the edges.

uij : the weight in MWM corresponding to constraint (i , j) of the dual.
signals if the edge relevant/not. Sparsify those.

Sparsification reveals a subgraph containing a near optimal solution.
But only at near-optimality.

18/24

New Strategy: Putting the Horse before the Cart

A natural algorithm for non-bipartite matching. Ahn, Guha 15.

1. Find an initial solution.

Of the dual problem. (A trend?)

2. We assign some prices to the edges.
3. For O(10/ε) steps:

3.1 Sample n1.1 edges using current prices.
3.2 Find the best weighted matching in the sample.
3.3 Maintain the best weight matching found (say β) so far.
3.4 Update the prices.

Update:


1. Subdivide sampled edges in t = O(1

ε log n) blocks

2. Simulate t steps of a primal-dual algorithm trying
to prove Opt ≈ β.

Feasible Dual ≤ β(1 + O(ε)).

3. Obtain new prices on the edges.

uij : the weight in MWM corresponding to constraint (i , j) of the dual.
signals if the edge relevant/not. Sparsify those.

Sparsification reveals a subgraph containing a near optimal solution.
But only at near-optimality.

18/24

New Strategy: Putting the Horse before the Cart

A natural algorithm for non-bipartite matching. Ahn, Guha 15.

1. Find an initial solution.

Of the dual problem. (A trend?)

2. We assign some prices to the edges.
3. For O(10/ε) steps:

3.1 Sample n1.1 edges using current prices.
3.2 Find the best weighted matching in the sample.
3.3 Maintain the best weight matching found (say β) so far.
3.4 Update the prices.

Update:


1. Subdivide sampled edges in t = O(1

ε log n) blocks

2. Simulate t steps of a primal-dual algorithm trying
to prove Opt ≈ β.

Feasible Dual ≤ β(1 + O(ε)).

3. Obtain new prices on the edges.

uij : the weight in MWM corresponding to constraint (i , j) of the dual.
signals if the edge relevant/not. Sparsify those.

Sparsification reveals a subgraph containing a near optimal solution.
But only at near-optimality.

18/24

New Strategy: Putting the Horse before the Cart

A natural algorithm for non-bipartite matching. Ahn, Guha 15.

1. Find an initial solution. Of the dual problem. (A trend?)

2. We assign some prices to the edges.
3. For O(10/ε) steps:

3.1 Sample n1.1 edges using current prices.
3.2 Find the best weighted matching in the sample.
3.3 Maintain the best weight matching found (say β) so far.
3.4 Update the prices.

Update:


1. Subdivide sampled edges in t = O(1

ε log n) blocks

2. Simulate t steps of a primal-dual algorithm trying
to prove Opt ≈ β. Feasible Dual ≤ β(1 + O(ε)).

3. Obtain new prices on the edges.

uij : the weight in MWM corresponding to constraint (i , j) of the dual.
signals if the edge relevant/not. Sparsify those.

Sparsification reveals a subgraph containing a near optimal solution.
But only at near-optimality.

18/24

New Strategy: Putting the Horse before the Cart

A natural algorithm for non-bipartite matching. Ahn, Guha 15.

1. Find an initial solution. Of the dual problem. (A trend?)

2. We assign some prices to the edges.
3. For O(10/ε) steps:

3.1 Sample n1.1 edges using current prices.
3.2 Find the best weighted matching in the sample.
3.3 Maintain the best weight matching found (say β) so far.
3.4 Update the prices.

Update:


1. Subdivide sampled edges in t = O(1

ε log n) blocks

2. Simulate t steps of a primal-dual algorithm trying
to prove Opt ≈ β. Feasible Dual ≤ β(1 + O(ε)).

3. Obtain new prices on the edges.

uij : the weight in MWM corresponding to constraint (i , j) of the dual.
signals if the edge relevant/not.

Sparsify those.

Sparsification reveals a subgraph containing a near optimal solution.
But only at near-optimality.

18/24

New Strategy: Putting the Horse before the Cart

A natural algorithm for non-bipartite matching. Ahn, Guha 15.

1. Find an initial solution. Of the dual problem. (A trend?)

2. We assign some prices to the edges.
3. For O(10/ε) steps:

3.1 Sample n1.1 edges using current prices.
3.2 Find the best weighted matching in the sample.
3.3 Maintain the best weight matching found (say β) so far.
3.4 Update the prices.

Update:


1. Subdivide sampled edges in t = O(1

ε log n) blocks

2. Simulate t steps of a primal-dual algorithm trying
to prove Opt ≈ β. Feasible Dual ≤ β(1 + O(ε)).

3. Obtain new prices on the edges.

uij : the weight in MWM corresponding to constraint (i , j) of the dual.
signals if the edge relevant/not.

Sparsify those.

Sparsification reveals a subgraph containing a near optimal solution.
But only at near-optimality.

18/24

New Strategy: Putting the Horse before the Cart

A natural algorithm for non-bipartite matching. Ahn, Guha 15.

1. Find an initial solution. Of the dual problem. (A trend?)

2. We assign some prices to the edges.
3. For O(10/ε) steps:

3.1 Sample n1.1 edges using current prices.
3.2 Find the best weighted matching in the sample.
3.3 Maintain the best weight matching found (say β) so far.
3.4 Update the prices.

Update:


1. Subdivide sampled edges in t = O(1

ε log n) blocks

2. Simulate t steps of a primal-dual algorithm trying
to prove Opt ≈ β. Feasible Dual ≤ β(1 + O(ε)).

3. Obtain new prices on the edges.

uij : the weight in MWM corresponding to constraint (i , j) of the dual.
signals if the edge relevant/not. Sparsify those.

Sparsification reveals a subgraph containing a near optimal solution.
But only at near-optimality.

18/24

Dantzig Decompositions

A running average view (primal space).

Hard
decision
problem

Easy
decision
problem

•

•

•• •

•

•

•

•
•••

•

Apx
decision
problem

19/24

Dantzig Decompositions

A running average view (primal space).

Hard
decision
problem

Easy
decision
problem

•

•

•• •

•

•

•

•
•••

•

Apx
decision
problem

19/24

Dantzig Decompositions

A running average view (primal space).

Hard
decision
problem

Easy
decision
problem

•

•

•• •

•

•

•

•
•••

•

Apx
decision
problem

19/24

Dantzig Decompositions

A running average view (primal space).

Hard
decision
problem

Easy
decision
problem

•

•

•• •

•

•

•

•
•••

•

Apx
decision
problem

19/24

Dantzig Decompositions

A running average view (primal space).

Hard
decision
problem

Easy
decision
problem

•

•

•• •

•

•

•

•
•••

•

Apx
decision
problem

19/24

Dantzig Decompositions

A running average view (primal space).

Hard
decision
problem

Easy
decision
problem

•

•

•

• •

•

•

•

•
•••

•

Apx
decision
problem

19/24

Dantzig Decompositions

A running average view (primal space).

Hard
decision
problem

Easy
decision
problem

•

•

•

• •

•

•

•

•
•••

•

Apx
decision
problem

19/24

Dantzig Decompositions

A running average view (primal space).

Hard
decision
problem

Easy
decision
problem

•

•

••

•

•

•

•

•
•••

•

Apx
decision
problem

19/24

Dantzig Decompositions

A running average view (primal space).

Hard
decision
problem

Easy
decision
problem

•

•

•• •

•

•

•

•
•••

•

Apx
decision
problem

19/24

Dantzig Decompositions

A running average view (primal space).

Hard
decision
problem

Easy
decision
problem

•

•

•• •

•

•

•

•
•••

•

Apx
decision
problem

19/24

Dantzig Decompositions

A running average view (primal space).

Hard
decision
problem

Easy
decision
problem

•

•

•• •

•

•

•

•

•••
•

Apx
decision
problem

19/24

Dantzig Decompositions

A running average view (primal space).

Hard
decision
problem

Easy
decision
problem

•

•

•• •

•

•

•

•
•

••
•

Apx
decision
problem

19/24

Dantzig Decompositions

A running average view (primal space).

Hard
decision
problem

Easy
decision
problem

•

•

•• •

•

•

•

•
•••

•

Apx
decision
problem

19/24

Dantzig Decompositions

A running average view (primal space).

Hard
decision
problem

Easy
decision
problem

•

•

•• •

•

•

•

•
•••

•

Apx
decision
problem

19/24

Dantzig Decompositions

A running average view (primal space).

Hard
decision
problem

Easy
decision
problem

•

•

•• •

•

•

•

•
•••

•

Apx
decision
problem

19/24

Dantzig Decompositions

A running average view (primal space).

Hard
decision
problem

Easy
decision
problem

•

•

•• •

•

•

•

•
•••

•

Apx
decision
problem

19/24

Dantzig Decompositions

A running average view (primal space).

Hard
decision
problem

Easy
decision
problem

•

•

•• •

•

•

•

•
•••

•

Apx
decision
problem

19/24

Sparsifications and Dantzig Decompositions

What if we sparsify u?

Construct multiple sparsifications in parallel. Use sequentially.

Hard
decision
problem

Easy
decision
problem

•

•

•

•

20/24

Sparsifications and Dantzig Decompositions

What if we sparsify u?

Construct multiple sparsifications in parallel. Use sequentially.

Hard
decision
problem

Easy
decision
problem

•

•

•

•

20/24

Sparsifications and Dantzig Decompositions

What if we sparsify u?

Construct multiple sparsifications in parallel. Use sequentially.

Hard
decision
problem

Easy
decision
problem

•

•

•

•

20/24

Sparsifications and Dantzig Decompositions

What if we sparsify u?

Construct multiple sparsifications in parallel. Use sequentially.

Hard
decision
problem

Easy
decision
problem

•

•

•

•

20/24

Sparsifications and Dantzig Decompositions

What if we sparsify u?

Construct multiple sparsifications in parallel. Use sequentially.

Hard
decision
problem

Easy
decision
problem

•

•

•

•

20/24

Sparsifications and Dantzig Decompositions

What if we sparsify u?

Construct multiple sparsifications in parallel. Use sequentially.

Hard
decision
problem

Easy
decision
problem

•

•

•

•

20/24

Sparsifications and Dantzig Decompositions

What if we sparsify u?

Construct multiple sparsifications in parallel. Use sequentially.

Hard
decision
problem

Easy
decision
problem

•

•

•

•

20/24

Sparsifications and Dantzig Decompositions

What if we sparsify u?

Construct multiple sparsifications in parallel. Use sequentially.

Hard
decision
problem

Easy
decision
problem

•

•

•

•

20/24

Sparsifications and Dantzig Decompositions

What if we sparsify u?

Construct multiple sparsifications in parallel. Use sequentially.

Hard
decision
problem

Easy
decision
problem

•

•

•

•

20/24

Sparsifications and Dantzig Decompositions

What if we sparsify u?
Construct multiple sparsifications in parallel. Use sequentially.

Hard
decision
problem

Easy
decision
problem

•

•

•

•

20/24

Sparsify in Parallel, Use Sequentially

We saw a version of sketch in parallel, use sequentially in connectivity.
Question: Where will we be after 5 steps of MWM?
Recall: If Aiy > bi : raise ui , i.e., ui ← ui (1 + ε)(Aiy−bi)/biρ.

ui (5) ∈ (1± ε)5ui . Construct 5 independent sparsifications of u.

•

Lets exaggerate changes
(for illustration).
If u were not changing ...
But they are. Need (small) corrections.
Presparsifiers.

21/24

Sparsify in Parallel, Use Sequentially

We saw a version of sketch in parallel, use sequentially in connectivity.
Question: Where will we be after 5 steps of MWM?
Recall: If Aiy > bi : raise ui , i.e., ui ← ui (1 + ε)(Aiy−bi)/biρ.

ui (5) ∈ (1± ε)5ui . Construct 5 independent sparsifications of u.

•

Lets exaggerate changes
(for illustration).
If u were not changing ...
But they are. Need (small) corrections.
Presparsifiers.

21/24

Sparsify in Parallel, Use Sequentially

We saw a version of sketch in parallel, use sequentially in connectivity.
Question: Where will we be after 5 steps of MWM?
Recall: If Aiy > bi : raise ui , i.e., ui ← ui (1 + ε)(Aiy−bi)/biρ.

ui (5) ∈ (1± ε)5ui . Construct 5 independent sparsifications of u.

•

Lets exaggerate changes
(for illustration).

If u were not changing ...
But they are. Need (small) corrections.
Presparsifiers.

21/24

Sparsify in Parallel, Use Sequentially

We saw a version of sketch in parallel, use sequentially in connectivity.
Question: Where will we be after 5 steps of MWM?
Recall: If Aiy > bi : raise ui , i.e., ui ← ui (1 + ε)(Aiy−bi)/biρ.

ui (5) ∈ (1± ε)5ui . Construct 5 independent sparsifications of u.

•

Lets exaggerate changes
(for illustration).
If u were not changing ...
But they are. Need (small) corrections.
Presparsifiers.

21/24

Sparsify in Parallel, Use Sequentially

We saw a version of sketch in parallel, use sequentially in connectivity.
Question: Where will we be after 5 steps of MWM?
Recall: If Aiy > bi : raise ui , i.e., ui ← ui (1 + ε)(Aiy−bi)/biρ.

ui (5) ∈ (1± ε)5ui . Construct 5 independent sparsifications of u.

•

Lets exaggerate changes
(for illustration).
If u were not changing ...
But they are. Need (small) corrections.
Presparsifiers.

21/24

Sparsify in Parallel, Use Sequentially

We saw a version of sketch in parallel, use sequentially in connectivity.
Question: Where will we be after 5 steps of MWM?
Recall: If Aiy > bi : raise ui , i.e., ui ← ui (1 + ε)(Aiy−bi)/biρ.

ui (5) ∈ (1± ε)5ui . Construct 5 independent sparsifications of u.

•

Lets exaggerate changes
(for illustration).
If u were not changing ...
But they are. Need (small) corrections.
Presparsifiers.

21/24

Sparsify in Parallel, Use Sequentially

We saw a version of sketch in parallel, use sequentially in connectivity.
Question: Where will we be after 5 steps of MWM?
Recall: If Aiy > bi : raise ui , i.e., ui ← ui (1 + ε)(Aiy−bi)/biρ.

ui (5) ∈ (1± ε)5ui . Construct 5 independent sparsifications of u.

•

Lets exaggerate changes
(for illustration).
If u were not changing ...
But they are. Need (small) corrections.
Presparsifiers.

21/24

Sparsify in Parallel, Use Sequentially

We saw a version of sketch in parallel, use sequentially in connectivity.
Question: Where will we be after 5 steps of MWM?
Recall: If Aiy > bi : raise ui , i.e., ui ← ui (1 + ε)(Aiy−bi)/biρ.

ui (5) ∈ (1± ε)5ui . Construct 5 independent sparsifications of u.

•

Lets exaggerate changes
(for illustration).
If u were not changing ...
But they are. Need (small) corrections.
Presparsifiers.

21/24

Sparsify in Parallel, Use Sequentially

We saw a version of sketch in parallel, use sequentially in connectivity.
Question: Where will we be after 5 steps of MWM?
Recall: If Aiy > bi : raise ui , i.e., ui ← ui (1 + ε)(Aiy−bi)/biρ.

ui (5) ∈ (1± ε)5ui . Construct 5 independent sparsifications of u.

•

Lets exaggerate changes
(for illustration).
If u were not changing ...
But they are. Need (small) corrections.
Presparsifiers.

21/24

Cuts and Sparsification

(Again dropping (i , j) ∈ E in the subscripts, yij = yji .)

β∗ = max
∑
(i,j)

wijyij∑
j

yij ≤ 1 ∀i

(Cut constraint!)∑
i,j∈U

yij ≤ b|U|/2c ∀U

yij ≥ 0

β∗ = min
∑
i

xi +
∑
U

⌊
|U|
2

⌋
zU

uij : xi + xj +
∑
i,j∈U

zU ≥ wij ∀(i , j) ∈ E

xi , zU ≥ 0

Rules out:
• •

•

1/2

1/21/2

• •

•
•

•

∑
i,j∈U

yij ≤ b|U|/2c ⇐⇒
∑
i∈U

(∑
j

yij

)
−

 ∑
i∈U,j 6∈U

yij

 ≤ 2 b|U|/2c

∑
i∈U,j 6∈U yij = Cut(U,V − U).

Find small cuts (with odd vertex sizes).

• •

•
•

•

Find small cuts (with odd vertex sizes).
Standard Algorithm: Augment, contract blossoms, ... (many rounds).
Signature: feasible,. . . ,feasible (larger), . . . , feasible, (near) optimal

Signature of Algorithms we just saw:
Bipartite: (O(ε−2 log n) rounds, no sparsification)
infeasible,. . . ,infeasible (smaller), . . . , feasible, (near) optimal

Non bipartite: ? (O(1/ε) rounds, sparsification)
infeasible dual, . . . , (estimate of β∗ is increasing), . . . , (near) optimal
. keep best matching seen so far, (near) optimal

22/24

Cuts and Sparsification
(Again dropping (i , j) ∈ E in the subscripts, yij = yji .)

β∗ = max
∑
(i,j)

wijyij∑
j

yij ≤ 1 ∀i

(Cut constraint!)∑
i,j∈U

yij ≤ b|U|/2c ∀U

yij ≥ 0

β∗ = min
∑
i

xi +
∑
U

⌊
|U|
2

⌋
zU

uij : xi + xj +
∑
i,j∈U

zU ≥ wij ∀(i , j) ∈ E

xi , zU ≥ 0

Rules out:
• •

•

1/2

1/21/2

• •

•
•

•

∑
i,j∈U

yij ≤ b|U|/2c ⇐⇒
∑
i∈U

(∑
j

yij

)
−

 ∑
i∈U,j 6∈U

yij

 ≤ 2 b|U|/2c

∑
i∈U,j 6∈U yij = Cut(U,V − U).

Find small cuts (with odd vertex sizes).

• •

•
•

•

Find small cuts (with odd vertex sizes).
Standard Algorithm: Augment, contract blossoms, ... (many rounds).
Signature: feasible,. . . ,feasible (larger), . . . , feasible, (near) optimal

Signature of Algorithms we just saw:
Bipartite: (O(ε−2 log n) rounds, no sparsification)
infeasible,. . . ,infeasible (smaller), . . . , feasible, (near) optimal

Non bipartite: ? (O(1/ε) rounds, sparsification)
infeasible dual, . . . , (estimate of β∗ is increasing), . . . , (near) optimal
. keep best matching seen so far, (near) optimal

22/24

Cuts and Sparsification
(Again dropping (i , j) ∈ E in the subscripts, yij = yji .)

β∗ = max
∑
(i,j)

wijyij∑
j

yij ≤ 1 ∀i (Cut constraint!)

∑
i,j∈U

yij ≤ b|U|/2c ∀U

yij ≥ 0

β∗ = min
∑
i

xi +
∑
U

⌊
|U|
2

⌋
zU

uij : xi + xj +
∑
i,j∈U

zU ≥ wij ∀(i , j) ∈ E

xi , zU ≥ 0

Rules out:
• •

•

1/2

1/21/2

• •

•
•

•

∑
i,j∈U

yij ≤ b|U|/2c ⇐⇒
∑
i∈U

(∑
j

yij

)
−

 ∑
i∈U,j 6∈U

yij

 ≤ 2 b|U|/2c

∑
i∈U,j 6∈U yij = Cut(U,V − U).

Find small cuts (with odd vertex sizes).

• •

•
•

•

Find small cuts (with odd vertex sizes).
Standard Algorithm: Augment, contract blossoms, ... (many rounds).
Signature: feasible,. . . ,feasible (larger), . . . , feasible, (near) optimal

Signature of Algorithms we just saw:
Bipartite: (O(ε−2 log n) rounds, no sparsification)
infeasible,. . . ,infeasible (smaller), . . . , feasible, (near) optimal

Non bipartite: ? (O(1/ε) rounds, sparsification)
infeasible dual, . . . , (estimate of β∗ is increasing), . . . , (near) optimal
. keep best matching seen so far, (near) optimal

22/24

Cuts and Sparsification
(Again dropping (i , j) ∈ E in the subscripts, yij = yji .)

β∗ = max
∑
(i,j)

wijyij∑
j

yij ≤ 1 ∀i (Cut constraint!)∑
i,j∈U

yij ≤ b|U|/2c ∀U

yij ≥ 0

β∗ = min
∑
i

xi +
∑
U

⌊
|U|
2

⌋
zU

uij : xi + xj +
∑
i,j∈U

zU ≥ wij ∀(i , j) ∈ E

xi , zU ≥ 0

Rules out:
• •

•

1/2

1/21/2

• •

•
•

•

∑
i,j∈U

yij ≤ b|U|/2c ⇐⇒
∑
i∈U

(∑
j

yij

)
−

 ∑
i∈U,j 6∈U

yij

 ≤ 2 b|U|/2c

∑
i∈U,j 6∈U yij = Cut(U,V − U).

Find small cuts (with odd vertex sizes).

• •

•
•

•

Find small cuts (with odd vertex sizes).
Standard Algorithm: Augment, contract blossoms, ... (many rounds).
Signature: feasible,. . . ,feasible (larger), . . . , feasible, (near) optimal

Signature of Algorithms we just saw:
Bipartite: (O(ε−2 log n) rounds, no sparsification)
infeasible,. . . ,infeasible (smaller), . . . , feasible, (near) optimal

Non bipartite: ? (O(1/ε) rounds, sparsification)
infeasible dual, . . . , (estimate of β∗ is increasing), . . . , (near) optimal
. keep best matching seen so far, (near) optimal

22/24

Cuts and Sparsification
(Again dropping (i , j) ∈ E in the subscripts, yij = yji .)

β∗ = max
∑
(i,j)

wijyij∑
j

yij ≤ 1 ∀i (Cut constraint!)∑
i,j∈U

yij ≤ b|U|/2c ∀U

yij ≥ 0

β∗ = min
∑
i

xi +
∑
U

⌊
|U|
2

⌋
zU

uij : xi + xj +
∑
i,j∈U

zU ≥ wij ∀(i , j) ∈ E

xi , zU ≥ 0

Rules out:
• •

•

1/2

1/21/2

• •

•
•

•

∑
i,j∈U

yij ≤ b|U|/2c ⇐⇒
∑
i∈U

(∑
j

yij

)
−

 ∑
i∈U,j 6∈U

yij

 ≤ 2 b|U|/2c

∑
i∈U,j 6∈U yij = Cut(U,V − U).

Find small cuts (with odd vertex sizes).

• •

•
•

•

Find small cuts (with odd vertex sizes).
Standard Algorithm: Augment, contract blossoms, ... (many rounds).
Signature: feasible,. . . ,feasible (larger), . . . , feasible, (near) optimal

Signature of Algorithms we just saw:
Bipartite: (O(ε−2 log n) rounds, no sparsification)
infeasible,. . . ,infeasible (smaller), . . . , feasible, (near) optimal

Non bipartite: ? (O(1/ε) rounds, sparsification)
infeasible dual, . . . , (estimate of β∗ is increasing), . . . , (near) optimal
. keep best matching seen so far, (near) optimal

22/24

Cuts and Sparsification
(Again dropping (i , j) ∈ E in the subscripts, yij = yji .)

β∗ = max
∑
(i,j)

wijyij∑
j

yij ≤ 1 ∀i (Cut constraint!)∑
i,j∈U

yij ≤ b|U|/2c ∀U

yij ≥ 0

β∗ = min
∑
i

xi +
∑
U

⌊
|U|
2

⌋
zU

uij : xi + xj +
∑
i,j∈U

zU ≥ wij ∀(i , j) ∈ E

xi , zU ≥ 0

Rules out:
• •

•

1/2

1/21/2

• •

•
•

•

∑
i,j∈U

yij ≤ b|U|/2c ⇐⇒
∑
i∈U

(∑
j

yij

)
−

 ∑
i∈U,j 6∈U

yij

 ≤ 2 b|U|/2c

∑
i∈U,j 6∈U yij = Cut(U,V − U).

Find small cuts (with odd vertex sizes).

• •

•
•

•

Find small cuts (with odd vertex sizes).
Standard Algorithm: Augment, contract blossoms, ... (many rounds).
Signature: feasible,. . . ,feasible (larger), . . . , feasible, (near) optimal

Signature of Algorithms we just saw:
Bipartite: (O(ε−2 log n) rounds, no sparsification)
infeasible,. . . ,infeasible (smaller), . . . , feasible, (near) optimal

Non bipartite: ? (O(1/ε) rounds, sparsification)
infeasible dual, . . . , (estimate of β∗ is increasing), . . . , (near) optimal
. keep best matching seen so far, (near) optimal

22/24

Cuts and Sparsification
(Again dropping (i , j) ∈ E in the subscripts, yij = yji .)

β∗ = max
∑
(i,j)

wijyij∑
j

yij ≤ 1 ∀i

(Cut constraint!)

∑
i,j∈U

yij ≤ b|U|/2c ∀U

yij ≥ 0

β∗ = min
∑
i

xi +
∑
U

⌊
|U|
2

⌋
zU

uij : xi + xj +
∑
i,j∈U

zU ≥ wij ∀(i , j) ∈ E

xi , zU ≥ 0

Rules out:
• •

•

1/2

1/21/2

• •

•
•

•

∑
i,j∈U

yij ≤ b|U|/2c ⇐⇒
∑
i∈U

(∑
j

yij

)
−

 ∑
i∈U,j 6∈U

yij

 ≤ 2 b|U|/2c

∑
i∈U,j 6∈U yij = Cut(U,V − U).

Find small cuts (with odd vertex sizes).

• •

•
•

•

Find small cuts (with odd vertex sizes).
Standard Algorithm: Augment, contract blossoms, ... (many rounds).
Signature: feasible,. . . ,feasible (larger), . . . , feasible, (near) optimal

Signature of Algorithms we just saw:
Bipartite: (O(ε−2 log n) rounds, no sparsification)
infeasible,. . . ,infeasible (smaller), . . . , feasible, (near) optimal

Non bipartite: ? (O(1/ε) rounds, sparsification)
infeasible dual, . . . , (estimate of β∗ is increasing), . . . , (near) optimal
. keep best matching seen so far, (near) optimal

22/24

Cuts and Sparsification
(Again dropping (i , j) ∈ E in the subscripts, yij = yji .)

β∗ = max
∑
(i,j)

wijyij∑
j

yij ≤ 1 ∀i

(Cut constraint!)

∑
i,j∈U

yij ≤ b|U|/2c ∀U

yij ≥ 0

β∗ = min
∑
i

xi +
∑
U

⌊
|U|
2

⌋
zU

uij : xi + xj +
∑
i,j∈U

zU ≥ wij ∀(i , j) ∈ E

xi , zU ≥ 0

Rules out:
• •

•

1/2

1/21/2

• •

•
•

•

∑
i,j∈U

yij ≤ b|U|/2c ⇐⇒
∑
i∈U

(∑
j

yij

)
−

 ∑
i∈U,j 6∈U

yij

 ≤ 2 b|U|/2c

∑
i∈U,j 6∈U yij = Cut(U,V − U).

Find small cuts (with odd vertex sizes).

• •

•
•

•

Find small cuts (with odd vertex sizes).

Standard Algorithm: Augment, contract blossoms, ... (many rounds).
Signature: feasible,. . . ,feasible (larger), . . . , feasible, (near) optimal

Signature of Algorithms we just saw:
Bipartite: (O(ε−2 log n) rounds, no sparsification)
infeasible,. . . ,infeasible (smaller), . . . , feasible, (near) optimal

Non bipartite: ? (O(1/ε) rounds, sparsification)
infeasible dual, . . . , (estimate of β∗ is increasing), . . . , (near) optimal
. keep best matching seen so far, (near) optimal

22/24

Cuts and Sparsification
(Again dropping (i , j) ∈ E in the subscripts, yij = yji .)

β∗ = max
∑
(i,j)

wijyij∑
j

yij ≤ 1 ∀i

(Cut constraint!)

∑
i,j∈U

yij ≤ b|U|/2c ∀U

yij ≥ 0

β∗ = min
∑
i

xi +
∑
U

⌊
|U|
2

⌋
zU

uij : xi + xj +
∑
i,j∈U

zU ≥ wij ∀(i , j) ∈ E

xi , zU ≥ 0

Rules out:
• •

•

1/2

1/21/2

• •

•
•

•

∑
i,j∈U

yij ≤ b|U|/2c ⇐⇒
∑
i∈U

(∑
j

yij

)
−

 ∑
i∈U,j 6∈U

yij

 ≤ 2 b|U|/2c

∑
i∈U,j 6∈U yij = Cut(U,V − U).

Find small cuts (with odd vertex sizes).

• •

•
•

•

Find small cuts (with odd vertex sizes).
Standard Algorithm: Augment, contract blossoms, ... (many rounds).
Signature: feasible,. . . ,feasible (larger), . . . , feasible, (near) optimal

Signature of Algorithms we just saw:
Bipartite: (O(ε−2 log n) rounds, no sparsification)
infeasible,. . . ,infeasible (smaller), . . . , feasible, (near) optimal

Non bipartite: ? (O(1/ε) rounds, sparsification)
infeasible dual, . . . , (estimate of β∗ is increasing), . . . , (near) optimal
. keep best matching seen so far, (near) optimal

22/24

Cuts and Sparsification
(Again dropping (i , j) ∈ E in the subscripts, yij = yji .)

β∗ = max
∑
(i,j)

wijyij∑
j

yij ≤ 1 ∀i

(Cut constraint!)

∑
i,j∈U

yij ≤ b|U|/2c ∀U

yij ≥ 0

β∗ = min
∑
i

xi +
∑
U

⌊
|U|
2

⌋
zU

uij : xi + xj +
∑
i,j∈U

zU ≥ wij ∀(i , j) ∈ E

xi , zU ≥ 0

Rules out:
• •

•

1/2

1/21/2

• •

•
•

•

∑
i,j∈U

yij ≤ b|U|/2c ⇐⇒
∑
i∈U

(∑
j

yij

)
−

 ∑
i∈U,j 6∈U

yij

 ≤ 2 b|U|/2c

∑
i∈U,j 6∈U yij = Cut(U,V − U).

Find small cuts (with odd vertex sizes).

• •

•
•

•

Find small cuts (with odd vertex sizes).
Standard Algorithm: Augment, contract blossoms, ... (many rounds).
Signature: feasible,. . . ,feasible (larger), . . . , feasible, (near) optimal

Signature of Algorithms we just saw:
Bipartite: (O(ε−2 log n) rounds, no sparsification)
infeasible,. . . ,infeasible (smaller), . . . , feasible, (near) optimal

Non bipartite: ? (O(1/ε) rounds, sparsification)
infeasible dual, . . . , (estimate of β∗ is increasing), . . . , (near) optimal
. keep best matching seen so far, (near) optimal

22/24

Cuts and Sparsification
(Again dropping (i , j) ∈ E in the subscripts, yij = yji .)

β∗ = max
∑
(i,j)

wijyij∑
j

yij ≤ 1 ∀i

(Cut constraint!)

∑
i,j∈U

yij ≤ b|U|/2c ∀U

yij ≥ 0

β∗ = min
∑
i

xi +
∑
U

⌊
|U|
2

⌋
zU

uij : xi + xj +
∑
i,j∈U

zU ≥ wij ∀(i , j) ∈ E

xi , zU ≥ 0

Rules out:
• •

•

1/2

1/21/2

• •

•
•

•

∑
i,j∈U

yij ≤ b|U|/2c ⇐⇒
∑
i∈U

(∑
j

yij

)
−

 ∑
i∈U,j 6∈U

yij

 ≤ 2 b|U|/2c

∑
i∈U,j 6∈U yij = Cut(U,V − U).

Find small cuts (with odd vertex sizes).

• •

•
•

•

Find small cuts (with odd vertex sizes).
Standard Algorithm: Augment, contract blossoms, ... (many rounds).
Signature: feasible,. . . ,feasible (larger), . . . , feasible, (near) optimal

Signature of Algorithms we just saw:
Bipartite: (O(ε−2 log n) rounds, no sparsification)
infeasible,. . . ,infeasible (smaller), . . . , feasible, (near) optimal

Non bipartite: ?

(O(1/ε) rounds, sparsification)
infeasible dual, . . . , (estimate of β∗ is increasing), . . . , (near) optimal
. keep best matching seen so far, (near) optimal

22/24

Cuts and Sparsification
(Again dropping (i , j) ∈ E in the subscripts, yij = yji .)

β∗ = max
∑
(i,j)

wijyij∑
j

yij ≤ 1 ∀i

(Cut constraint!)

∑
i,j∈U

yij ≤ b|U|/2c ∀U

yij ≥ 0

β∗ = min
∑
i

xi +
∑
U

⌊
|U|
2

⌋
zU

uij : xi + xj +
∑
i,j∈U

zU ≥ wij ∀(i , j) ∈ E

xi , zU ≥ 0

Rules out:
• •

•

1/2

1/21/2

• •

•
•

•

∑
i,j∈U

yij ≤ b|U|/2c ⇐⇒
∑
i∈U

(∑
j

yij

)
−

 ∑
i∈U,j 6∈U

yij

 ≤ 2 b|U|/2c

∑
i∈U,j 6∈U yij = Cut(U,V − U).

Find small cuts (with odd vertex sizes).

• •

•
•

•

Find small cuts (with odd vertex sizes).
Standard Algorithm: Augment, contract blossoms, ... (many rounds).
Signature: feasible,. . . ,feasible (larger), . . . , feasible, (near) optimal

Signature of Algorithms we just saw:
Bipartite: (O(ε−2 log n) rounds, no sparsification)
infeasible,. . . ,infeasible (smaller), . . . , feasible, (near) optimal

Non bipartite:

?

(O(1/ε) rounds, sparsification)
infeasible dual, . . . , (estimate of β∗ is increasing), . . . , (near) optimal

. keep best matching seen so far, (near) optimal

22/24

Cuts and Sparsification
(Again dropping (i , j) ∈ E in the subscripts, yij = yji .)

β∗ = max
∑
(i,j)

wijyij∑
j

yij ≤ 1 ∀i

(Cut constraint!)

∑
i,j∈U

yij ≤ b|U|/2c ∀U

yij ≥ 0

β∗ = min
∑
i

xi +
∑
U

⌊
|U|
2

⌋
zU

uij : xi + xj +
∑
i,j∈U

zU ≥ wij ∀(i , j) ∈ E

xi , zU ≥ 0

Rules out:
• •

•

1/2

1/21/2

• •

•
•

•

∑
i,j∈U

yij ≤ b|U|/2c ⇐⇒
∑
i∈U

(∑
j

yij

)
−

 ∑
i∈U,j 6∈U

yij

 ≤ 2 b|U|/2c

∑
i∈U,j 6∈U yij = Cut(U,V − U).

Find small cuts (with odd vertex sizes).

• •

•
•

•

Find small cuts (with odd vertex sizes).
Standard Algorithm: Augment, contract blossoms, ... (many rounds).
Signature: feasible,. . . ,feasible (larger), . . . , feasible, (near) optimal

Signature of Algorithms we just saw:
Bipartite: (O(ε−2 log n) rounds, no sparsification)
infeasible,. . . ,infeasible (smaller), . . . , feasible, (near) optimal

Non bipartite:

?

(O(1/ε) rounds, sparsification)
infeasible dual, . . . , (estimate of β∗ is increasing), . . . , (near) optimal
. keep best matching seen so far, (near) optimal

22/24

Wrap up
(1) Primitives: Sampling, Sketching and Sparsification.

(2) LPs (MWM) on Streams.

(3) Remember a small number of weight values.

(4) Compute in sketch (sparsified) space entirely. Correlation clustering.

(5) May need to change the natural relaxations (convergence speed).

(6) May need new relaxations for correctness.

(7) Round first, ask questions later, failing, take a dual step.

(8) Dual-Primal algorithms may help. SDP, Nonbipartite Matching.

(9) Think differently. The real voyage of discovery ...

23/24

Wrap up
(1) Primitives: Sampling, Sketching and Sparsification.

(2) LPs (MWM) on Streams.

(3) Remember a small number of weight values.

(4) Compute in sketch (sparsified) space entirely. Correlation clustering.

(5) May need to change the natural relaxations (convergence speed).

(6) May need new relaxations for correctness.

(7) Round first, ask questions later, failing, take a dual step.

(8) Dual-Primal algorithms may help. SDP, Nonbipartite Matching.

(9) Think differently. The real voyage of discovery ...

23/24

Wrap up
(1) Primitives: Sampling, Sketching and Sparsification.

(2) LPs (MWM) on Streams.

(3) Remember a small number of weight values.

(4) Compute in sketch (sparsified) space entirely. Correlation clustering.

(5) May need to change the natural relaxations (convergence speed).

(6) May need new relaxations for correctness.

(7) Round first, ask questions later, failing, take a dual step.

(8) Dual-Primal algorithms may help. SDP, Nonbipartite Matching.

(9) Think differently. The real voyage of discovery ...

23/24

Wrap up
(1) Primitives: Sampling, Sketching and Sparsification.

(2) LPs (MWM) on Streams.

(3) Remember a small number of weight values.

(4) Compute in sketch (sparsified) space entirely. Correlation clustering.

(5) May need to change the natural relaxations (convergence speed).

(6) May need new relaxations for correctness.

(7) Round first, ask questions later, failing, take a dual step.

(8) Dual-Primal algorithms may help. SDP, Nonbipartite Matching.

(9) Think differently. The real voyage of discovery ...

23/24

Wrap up
(1) Primitives: Sampling, Sketching and Sparsification.

(2) LPs (MWM) on Streams.

(3) Remember a small number of weight values.

(4) Compute in sketch (sparsified) space entirely. Correlation clustering.

(5) May need to change the natural relaxations (convergence speed).

(6) May need new relaxations for correctness.

(7) Round first, ask questions later, failing, take a dual step.

(8) Dual-Primal algorithms may help. SDP, Nonbipartite Matching.

(9) Think differently. The real voyage of discovery ...

23/24

Wrap up
(1) Primitives: Sampling, Sketching and Sparsification.

(2) LPs (MWM) on Streams.

(3) Remember a small number of weight values.

(4) Compute in sketch (sparsified) space entirely. Correlation clustering.

(5) May need to change the natural relaxations (convergence speed).

(6) May need new relaxations for correctness.

(7) Round first, ask questions later, failing, take a dual step.

(8) Dual-Primal algorithms may help. SDP, Nonbipartite Matching.

(9) Think differently. The real voyage of discovery ...

23/24

Wrap up
(1) Primitives: Sampling, Sketching and Sparsification.

(2) LPs (MWM) on Streams.

(3) Remember a small number of weight values.

(4) Compute in sketch (sparsified) space entirely. Correlation clustering.

(5) May need to change the natural relaxations (convergence speed).

(6) May need new relaxations for correctness.

(7) Round first, ask questions later, failing, take a dual step.

(8) Dual-Primal algorithms may help. SDP, Nonbipartite Matching.

(9) Think differently. The real voyage of discovery ...

23/24

Wrap up
(1) Primitives: Sampling, Sketching and Sparsification.

(2) LPs (MWM) on Streams.

(3) Remember a small number of weight values.

(4) Compute in sketch (sparsified) space entirely. Correlation clustering.

(5) May need to change the natural relaxations (convergence speed).

(6) May need new relaxations for correctness.

(7) Round first, ask questions later, failing, take a dual step.

(8) Dual-Primal algorithms may help. SDP, Nonbipartite Matching.

(9) Think differently. The real voyage of discovery ...

23/24

Wrap up
(1) Primitives: Sampling, Sketching and Sparsification.

(2) LPs (MWM) on Streams.

(3) Remember a small number of weight values.

(4) Compute in sketch (sparsified) space entirely. Correlation clustering.

(5) May need to change the natural relaxations (convergence speed).

(6) May need new relaxations for correctness.

(7) Round first, ask questions later, failing, take a dual step.

(8) Dual-Primal algorithms may help. SDP, Nonbipartite Matching.

(9) Think differently. The real voyage of discovery ...

23/24

Thank You

24/24

